

Subject Information Guide

Graph Drawing

February 5-23, 2018

Administration and contact details

Host Department	School of Mathematical and Physical Sciences.	
Host Institution	University of Newcastle	
Name of lecturer	Peter Eades	
Phone number		
Email Address	Peter.Eades@sydney.edu.au	
Homepage	http://www.cs.usyd.edu.au/~peter/	
Name of Honours coordinator	Jeff Hogan	
Phone number	02 4921 7235	
Email Address	Jeff.hogan@newcastle.edu.au	

Subject details

Handbook entry URL	
Subject homepage URL	
Honours student hand-out URL	
Start date:	05/02/2018
End date:	23/02/2018
Contact hours per week:	8
Lecture day and time:	Monday-Thursday, 10-12
Description of electronic access arrangements for students (for example, WebCT)	

Subject content

1. Subject content description

This subject is about geometric representations of graphs, and algorithms that take a graph as input and produce a visualization (aka *drawing*) of the graph as output. We discuss the quality of such visualizations of graphs from the human perceptual point of view.

The course discusses both small and large graphs. For small graphs, we examine algorithms that use the concepts of topological graph theory. For large graphs, we examine methods based on minimising energy in physical system, and well as methods based on spectral graph theory.

2. Week-by-week topic overview

Topics covered are

Торіс		
Introduction to graph visualization		
Background graph theory, algorithmics, and complexity		
Background graph algorithms		
Readability metrics and human experiment		
Tree drawing		
Planar graphs, topological graphs		
Straight-line planar graph drawing, orthogonal planar graph drawing		
Planarization and beyond planarity		
Faithfulness metrics		
Force-directed graph drawing and multiscale methods		
Spectral graph theory		
Spectral graph drawing		
	24	

24

3. Assumed prerequisite knowledge and capabilities

Some combinatorial and linear mathematics.

4. Learning outcomes and objectives

After successful completion of this subject, students will

- understand established graph drawing algorithms.
- be able develop graph drawing algorithms
- understand human perception of graph visualizations
- 5. Learning resources

There are a large number of textbooks and web resources on the background graph theory and algorithmics.

A number of specific papers will be referenced in class, including papers from the following surveys:

- Kaufmann, Michael; Wagner, Dorothea, eds. (2001), Drawing Graphs: Methods and Models, Lecture Notes in Computer Science, 2025, Springer-Verlag, doi:10.1007/3-540-44969-8.
- Tamassia, Roberto, ed. (2014), Handbook of Graph Drawing and Visualization, CRC Press.

6. Assessment

Exam/assignment/classwork breakdown							
Exam	50%	Assignment	40%	Class work	10%		
Assignment due dates		March 1					
		·					
Approximate exam date				March 1			

Institution Honours program details

Weight of subject in total honours assessment at	1/8	
host department		
Thesis/subject split at host department	Thesis 3/8; Coursework 5/8	
Honours grade ranges at host department:		
H1	85-100	
H2a	75-84	
H2b	65-74	
НЗ	50-64	