Introduction to CAT(0) spaces

Miroslav Bačák

CARMA, University of Newcastle

23 March 2010

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - 퍼 ㅂ - 9 ٩.0*

Contents of the talk

- **1** [Geodesics and angles](#page-2-0)
- \odot [CAT\(0\) spaces](#page-19-0)
- **8** [Examples](#page-40-0)
- **4** [Metric projections](#page-47-0)
- **6** [Open problems](#page-54-0)

← □ ▶ → (倒 ▶

H 트 H H 트 H 트 트 9 Q O

[Geodesics](#page-6-0) [Length space](#page-10-0) [Angles](#page-13-0)

Geodesics

Let (X, d) be a metric space. A geodesic joining $x \in X$ to $y \in X$ is a mapping $\gamma : [0, d(x, y)] \rightarrow X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x,y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

 X is a (uniquely) geodesic metric space if any two points are connected by a (unique) geodesic.

[Geodesics](#page-6-0) [Length space](#page-10-0) [Angles](#page-13-0)

Geodesics

Let (X, d) be a metric space. A geodesic joining $x \in X$ to $y \in X$ is a mapping $\gamma : [0, d(x, y)] \rightarrow X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x,y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

 X is a (uniquely) geodesic metric space if any two points are connected by a (unique) geodesic.

[Geodesics](#page-6-0) [Length space](#page-10-0) [Angles](#page-13-0)

Geodesics

Let (X, d) be a metric space. A geodesic joining $x \in X$ to $y \in X$ is a mapping $\gamma : [0, d(x, y)] \rightarrow X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x, y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

 X is a (uniquely) geodesic metric space if any two points are connected by a (unique) geodesic.

[Geodesics](#page-6-0) [Length space](#page-10-0) [Angles](#page-13-0)

Geodesics

Let (X, d) be a metric space. A geodesic joining $x \in X$ to $y \in X$ is a mapping $\gamma : [0, d(x, y)] \rightarrow X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x, y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

 X is a (uniquely) geodesic metric space if any two points are connected by a (unique) geodesic.

[Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Geodesics

Let (X, d) be a metric space. A geodesic joining $x \in X$ to $y \in X$ is a mapping $\gamma : [0, d(x, y)] \rightarrow X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x, y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a (uniquely) geodesic metric space if any two points are connected by a (unique) geodesic.

[Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists of three point $p, q, r \in X$ and three geodesics $[p, q], [q, r], [r, p]$. Denote \triangle ([p, q], [q, r], [r, p]).

For such a triangle, there is a *comparison triangle* $\overline{\triangle}(\overline{p}, \overline{q}, \overline{r}) \subset \mathbb{R}^2$:

- $d(p, q) = d(\overline{p}, \overline{q})$
- $d(q, r) = d(\overline{q}, \overline{r})$
- $d(r, p) = d(\overline{r}, \overline{p})$

[Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists of three point $p, q, r \in X$ and three geodesics $[p, q], [q, r], [r, p]$. Denote \triangle ([p, q], [q, r], [r, p]).

For such a triangle, there is a *comparison triangle* $\overline{\triangle}(\overline{p}, \overline{q}, \overline{r}) \subset \mathbb{R}^2$:

- $d(p, q) = d(\overline{p}, \overline{q})$
- $d(q, r) = d(\overline{q}, \overline{r})$
- $d(r, p) = d(\overline{r}, \overline{p})$

[Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists of three point $p, q, r \in X$ and three geodesics $[p, q], [q, r], [r, p]$. Denote \triangle ([p, q], [q, r], [r, p]).

For such a triangle, there is a *comparison triangle* $\overline{\triangle}(\overline{p}, \overline{q}, \overline{r}) \subset \mathbb{R}^2$:

- $d(p, q) = d(\overline{p}, \overline{q})$
- $d(q, r) = d(\overline{q}, \overline{r})$
- $d(r, p) = d(\overline{r}, \overline{p})$

[Geodesics](#page-2-0) [Length space](#page-12-0) [Angles](#page-13-0)

Length space

Let (X, d) be a metric space. A curve is a continuous mapping from a compact interval to X .

The length of a curve $\gamma : [a, b] \to X$ is

$$
\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d(\gamma(t_i), \gamma(t_{i+1})),
$$

where P stands for the set of partitions of $[a, b]$.

 (X, d) is a length space if for any $x, y \in X$ we have

K ロ > K @ > K B > K B > [모]로

 Ω

[Geodesics](#page-2-0) [Length space](#page-12-0) [Angles](#page-13-0)

Length space

Let (X, d) be a metric space. A curve is a continuous mapping from a compact interval to X .

The length of a curve $\gamma : [a, b] \to X$ is

$$
\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d(\gamma(t_i), \gamma(t_{i+1})),
$$

where P stands for the set of partitions of $[a, b]$.

 (X, d) is a length space if for any $x, y \in X$ we have

K ロ > K @ > K B > K B > [B] B

 Ω

[Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Length space

Let (X, d) be a metric space. A curve is a continuous mapping from a compact interval to X .

The length of a curve $\gamma : [a, b] \to X$ is

$$
\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d(\gamma(t_i), \gamma(t_{i+1})),
$$

where P stands for the set of partitions of $[a, b]$.

Definition

 (X, d) is a length space if for any $x, y \in X$ we have

$$
d(x, y) = \inf \{ \ell(\gamma) : \gamma \text{ joins } x, y \}.
$$

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-18-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- one can take $\lim_{n \to \infty} \ln \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- $\bullet\,$ for a fixed $p\in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- $\bullet\,$ the function $\alpha(\cdot, \cdot, \cdot)$ is usc on $X^3\dots$

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-18-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- \bullet one can take $\lim_{n \to \infty} \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- $\bullet\,$ for a fixed $p\in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- $\bullet\,$ the function $\alpha(\cdot, \cdot, \cdot)$ is usc on $X^3\dots$

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-18-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- \bullet one can take $\lim_{n \to \infty} \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- $\bullet\,$ for a fixed $p\in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- $\bullet\,$ the function $\alpha(\cdot, \cdot, \cdot)$ is usc on $X^3\dots$

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-18-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- \bullet one can take $\lim_{n \to \infty} \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- $\bullet\,$ the function $\alpha(\cdot, \cdot, \cdot)$ is usc on $X^3\dots$

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-18-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- \bullet one can take $\lim_{n \to \infty} \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- the function $\alpha(\cdot,\cdot,\cdot)$ is usc on X^3 .

[CAT\(0\) spaces](#page-19-0) [Examples](#page-40-0) [Metric projections](#page-47-0) [Open problems](#page-54-0) [Geodesics](#page-2-0) [Length space](#page-10-0) [Angles](#page-13-0)

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1 : [0, t_1] \to X$ and $\gamma_2 : [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$
\alpha(\gamma_1, \gamma_2) = \limsup_{t_1, t_2 \to 0} \angle(\gamma_1(t_1), \gamma_1(0), \gamma_2(t_2)).
$$

So, the angle is a number from $[0, \pi]$. In CAT(0) spaces:

- \bullet one can take $\lim_{n \to \infty} \frac{1}{n}$ in place of $\lim_{n \to \infty} \frac{1}{n}$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot,p,\cdot)$ is continuous on $X^2,$
- the function $\alpha(\cdot,\cdot,\cdot)$ is usc on $X^3\dots$

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

1 [Geodesics and angles](#page-2-0)

\bullet [CAT\(0\) spaces](#page-19-0)

- **8** [Examples](#page-40-0)
- **4** [Metric projections](#page-47-0)
- **6** [Open problems](#page-54-0)

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Definition of CAT(0) space

Definition (CAT(0) space)

Let (X, d) be a geodesic space. It is a CAT(0) space if for any geodesic triangle $\triangle \subset X$ and $x, y \in \triangle$ we have $d(x, y) \leq d(\overline{x}, \overline{y}),$ where $\overline{x}, \overline{y} \in \overline{\triangle}$.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-24-0) [Equivalent conditions](#page-25-0)

Basic properties

Let X be a CAT (0) space. Then we have

- **1** For each $x, y \in X$ there is a unique geodesic connecting x, y .
- **2** Geodesics vary continuously with their end points.
- \bullet X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x, y)d(u, v) \leq d(x, u)d(y, v) + d(x, v)d(y, u).$

4 X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-24-0) [Equivalent conditions](#page-25-0)

Basic properties

Let X be a CAT (0) space. Then we have

- **1** For each $x, y \in X$ there is a unique geodesic connecting x, y .
- **2** Geodesics vary continuously with their end points.
- \bullet X is Ptolemaic, i.e. the Ptolemy inequality holds:

$d(x, y)d(u, v) \leq d(x, u)d(y, v) + d(x, v)d(y, u).$

4 X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-24-0) [Equivalent conditions](#page-25-0)

Basic properties

Let X be a CAT (0) space. Then we have

- **1** For each $x, y \in X$ there is a unique geodesic connecting x, y .
- **2** Geodesics vary continuously with their end points.
- \bullet X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x, y)d(u, v) \leq d(x, u)d(y, v) + d(x, v)d(y, u).$

4 X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Basic properties

Let X be a CAT (0) space. Then we have

- **1** For each $x, y \in X$ there is a unique geodesic connecting x, y .
- **2** Geodesics vary continuously with their end points.
- \bullet X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x, y)d(u, v) \leq d(x, u)d(y, v) + d(x, v)d(y, u).$

 \bullet X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \rightarrow X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-26-0)

Equivalent conditions

Proposition

Let X be a complete metric space. Then X is a length space if and only if for any $x, y \in X$ and $\delta > 0$ there is $m \in X$ such that

$$
\max\{d(x,m), d(y,m)\} \le \frac{1}{2}d(x,y) + \delta.
$$

Let X be a complete metric space. Then X is geodesic if and only if for any $x, y \in X$ there exists $m \in X$ such that

$$
d(x, m) = d(m, y) = \frac{1}{2}d(x, y).
$$

K ロ > K @ > K B > K B > [B] B

 Ω

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition

Let X be a complete metric space. Then X is a length space if and only if for any $x, y \in X$ and $\delta > 0$ there is $m \in X$ such that

$$
\max\{d(x,m), d(y,m)\} \le \frac{1}{2}d(x,y) + \delta.
$$

Proposition (Menger)

Let X be a complete metric space. Then X is geodesic if and only if for any $x, y \in X$ there exists $m \in X$ such that

$$
d(x, m) = d(m, y) = \frac{1}{2}d(x, y).
$$

イロト イ部 トイヨ トイヨト

국도

 Ω

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition

Let X be a complete metric space. The following conditions are equivalent.

 $\bullet X$ is a CAT(0) space.

2 For any $a, b \in X$ and $\delta > 0$ there is $m \in X$ such that $\max\left\{d(a, m), d(b, m)\right\} \leq \frac{1}{2}d(a, b) + \delta$, and for any $x_1,x_2,y_1,y_2\in X$ there exist $\bar{x_1},\bar{x_2},\bar{y_1},\bar{y_2}\in \mathbb{R}^2$ such that $d(x_i,y_j)=d(\bar{x_i},\bar{y_j})$ for $i,j\in\{1,2\},$ and $d(x_1, x_2) \leq d(\bar{x_1}, \bar{x_2})$ and $d(y_1, y_2) \leq d(\bar{y_1}, \bar{y_2}).$

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition

Let X be a complete metric space. The following conditions are equivalent.

 $\bullet X$ is a CAT(0) space.

2 For any $a, b \in X$ and $\delta > 0$ there is $m \in X$ such that $\max\left\{d(a, m), d(b, m)\right\} \leq \frac{1}{2}d(a, b) + \delta$, and for any $x_1,x_2,y_1,y_2\in X$ there exist $\bar{x_1},\bar{x_2},\bar{y_1},\bar{y_2}\in \mathbb{R}^2$ such that $d(x_i,y_j)=d(\bar{x_i},\bar{y_j})$ for $i,j\in\{1,2\},$ and $d(x_1, x_2) \leq d(\bar{x_1}, \bar{x_2})$ and $d(y_1, y_2) \leq d(\bar{y_1}, \bar{y_2}).$

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition

Let X be a geodesic space. TFAE

- $\bullet X$ is a CAT(0) space.
- **②** For every triangle $\Delta([p, q], [q, r], [r, p]) \subset X$ and every $x \in [q, r]$, we have

 $d(x, p) \leq d(\bar{x}, \bar{p}).$

3 For every triangle $\Delta([p, q], [q, r], [r, p]) \subset X$ and every $x \in [p, q], y \in [p, r]$ with $x \neq p$ and $y \neq p$, we have

$$
\measuredangle(\bar{x},\bar{p},\bar{y}) \leq \measuredangle(\bar{q},\bar{p},\bar{r}).
$$

K ロ > K @ > K ミ > K ミ > - ミ(ヨ)

つくい

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition

Let X be a geodesic space. TFAE

- $\bullet X$ is a CAT(0) space.
- **②** For every triangle $\Delta([p, q], [q, r], [r, p]) \subset X$ and every $x \in [q, r]$, we have

 $d(x, p) \leq d(\bar{x}, \bar{p}).$

3 For every triangle \triangle ([p, q], [q, r], [r, p]) $\subset X$ and every $x \in [p,q], y \in [p,r]$ with $x \neq p$ and $y \neq p$, we have

 $\measuredangle(\bar{x}, \bar{p}, \bar{q}) \leq \measuredangle(\bar{q}, \bar{p}, \bar{r}).$

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (...continued)

- \bullet The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- **6** For every triangle $\Delta([p, q], [q, r], [r, p]) \subset X$ with $p \neq q$ and $p\neq r,$ if $\bigtriangleup\left([a, b], [b, c], [c, a]\right) \subset \mathbb{R}^2$ is a triangle with then $d(q, r) \geq d(b, c)$
- **6** For any $x, y, z \in X$ and $m \in X$ with $2d(y, m) = 2d(m, z) = d(y, z)$ we have

 $d(x,y)^2 + d(x,z)^2 \geq 2d(x,m)^2 + \frac{1}{2}$ $\frac{1}{2}d(y,z)^2$.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (...continued)

- \bullet The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- **6** For every triangle \triangle ([p, q], [q, r], [r, p]) $\subset X$ with $p \neq q$ and $p\neq r,$ if $\bigtriangleup\left([a, b], [b, c], [c, a]\right) \subset \mathbb{R}^2$ is a triangle with $d(p, q) = d(a, b), d(p, r) = d(a, c)$ and $\measuredangle(b, a, c) = \alpha(q, p, r)$, then $d(q, r) \geq d(b, c)$

6 For any
$$
x, y, z \in X
$$
 and $m \in X$ with $2d(y,m) = 2d(m,z) = d(y,z)$ we have

 $d(x,y)^2 + d(x,z)^2 \geq 2d(x,m)^2 + \frac{1}{2}$ $\frac{1}{2}d(y,z)^2$.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (...continued)

- \bullet The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- **6** For every triangle \triangle ([p, q], [q, r], [r, p]) $\subset X$ with $p \neq q$ and $p\neq r,$ if $\bigtriangleup\left([a, b], [b, c], [c, a]\right) \subset \mathbb{R}^2$ is a triangle with $d(p, q) = d(a, b), d(p, r) = d(a, c)$ and $\measuredangle(b, a, c) = \alpha(q, p, r)$, then $d(q, r) \geq d(b, c)$
- **6** For any $x, y, z \in X$ and $m \in X$ with $2d(y, m) = 2d(m, z) = d(y, z)$ we have

$$
d(x, y)^{2} + d(x, z)^{2} \ge 2d(x, m)^{2} + \frac{1}{2}d(y, z)^{2}.
$$

 $0 \vee C$

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$
d(x,y)d(u,v)\leq d(x,u)d(y,v)+d(x,v)d(y,u).
$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

A geodesic space X is $CAT(0)$ if and only if it is Ptolemaic and Busemann convex.

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$
d(x,y)d(u,v)\leq d(x,u)d(y,v)+d(x,v)d(y,u).
$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

Proposition

A geodesic space X is $CAT(0)$ if and only if it is Ptolemaic and Busemann convex.
[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$
d(x,u)^2+d(y,v)^2\leq d(x,y)^2+d(y,u)^2+d(u,v)^2+d(v,x)^2
$$

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y,\sigma^{1/2})$ where (Y,σ) is an arbitrary metric space.

イロト イ部 トイヨ トイヨト

 Ω

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$
d(x,u)^2+d(y,v)^2\leq d(x,y)^2+d(y,u)^2+d(u,v)^2+d(v,x)^2
$$

Remark

- Answers a question of Gromov
-
- The inequality holds for instance for the metric space $(Y,\sigma^{1/2})$ where (Y,σ) is an arbitrary metric space.

K ロ > K @ > K B > K B > [모] 보

 OQ

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$
d(x,u)^2+d(y,v)^2\leq d(x,y)^2+d(y,u)^2+d(u,v)^2+d(v,x)^2
$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y,\sigma^{1/2})$ where (Y,σ) is an arbitrary metric space.

イロン イ部ン イヨン イヨン

국도

 OQ

[Definition of CAT\(0\)](#page-20-0) [Basic properties](#page-21-0) [Equivalent conditions](#page-25-0)

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$
d(x,u)^2+d(y,v)^2\leq d(x,y)^2+d(y,u)^2+d(u,v)^2+d(v,x)^2
$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y,\sigma^{1/2})$ where (Y,σ) is an arbitrary metric space.

K ロ > K @ > K B > K B > [모] 보

 OQ

1 [Geodesics and angles](#page-2-0)

 \odot [CAT\(0\) spaces](#page-19-0)

8 [Examples](#page-40-0)

4 [Metric projections](#page-47-0)

6 [Open problems](#page-54-0)

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

Examples

\bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$

 \bigodot Classical hyperbolic spaces \mathbb{H}^n

- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, ...

Examples

 \bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$

3 Classical hyperbolic spaces \mathbb{H}^n

- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, ...

Examples

 \bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$

$\mathbf{\Theta}$ Classical hyperbolic spaces \mathbb{H}^n

- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, ...

Examples

 \bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$
- $\mathbf{\Theta}$ Classical hyperbolic spaces \mathbb{H}^n
- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, ...

Examples

 \bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$
- $\mathbf{\Theta}$ Classical hyperbolic spaces \mathbb{H}^n
- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings

Examples

 \bullet Hilbert spaces – the only Banach spaces which are CAT (0)

2 R-trees: a metric space T is an R-tree if

- for $x, y \in T$ there is a unique geodesic $[x, y]$
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$
- $\mathbf{\Theta}$ Classical hyperbolic spaces \mathbb{H}^n
- 4 Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, ...

- **1** [Geodesics and angles](#page-2-0)
- Q CAT (0) spaces
- **8** [Examples](#page-40-0)
- **4** [Metric projections](#page-47-0)
- **6** [Open problems](#page-54-0)

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

Projections

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is convex if, given $x, y \in M$, we have $[x, y] \subset M$.

Let (X, d) be a complete CAT(0) space and $C \subset X$ be a convex closed set. Define the distance function by

$$
d(x, C) = \inf_{c \in C} d(x, c), \quad x \in X.
$$

Projections

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is convex if, given $x, y \in M$, we have $[x, y] \subset M$.

Let (X, d) be a complete CAT(0) space and $C \subset X$ be a convex closed set. Define the distance function by

$$
d(x, C) = \inf_{c \in C} d(x, c), \quad x \in X.
$$

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- **1** for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- \bigcirc For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- **1** for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.

 \bigcirc For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - 퍼 ㅂ - 9 ٩.0*

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- **1** for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **3** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

K ロ > K @ ▶ K 글 ▶ K 글 ▶ [로]님 (9) Q @

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- **1** for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **3** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}\)$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

K ロ > K @ ▶ K 글 ▶ K 글 ▶ [로]님 (9) Q @

[Property \(N\)](#page-55-0) [A non-empty intersection](#page-56-0)

1 [Geodesics and angles](#page-2-0)

 Q CAT (0) spaces

8 [Examples](#page-40-0)

4 [Metric projections](#page-47-0)

6 [Open problems](#page-54-0)

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

[Property \(N\)](#page-55-0) [A non-empty intersection](#page-56-0)

Nice projections on geodesics

Definition

We shall say that X has the *property (N)* if, given a geodesic γ and $x, y \in X$, we have that $P_{\gamma}(m)$ lies on the geodesic from $P_{\gamma}(x)$ to $P_{\gamma}(y)$, for any $m \in [x, y]$.

Do all complete $CAT(0)$ spaces have the property (N) ?

[Property \(N\)](#page-55-0) [A non-empty intersection](#page-56-0)

A non-empty intersection

. . . on the blackboard

Suggestions for our next talks

- Examples (hyperbolic spaces, manifolds, buildings,. . .)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Applications (phylogenetic trees)

 $E \rightarrow A E + E + 0.00$

Metric projections onto convex sets

Miroslav Bačák

CARMA, University of Newcastle

30 March 2010

H 트 H H 트 H 트 트 9 Q O

Contents of the talk

¹ [Warm-up](#page-60-0)

[Cosine rule](#page-60-0) [Inversion in metric spaces](#page-62-0)

2 [Metric projections](#page-68-0)

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

3 [Final remarks](#page-91-0)

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

 \rightarrow

 $E|E \cap Q$

[Cosine rule](#page-61-0) [Inversion in metric spaces](#page-62-0)

Cosine rule

Recall:

Proposition

Let X be a geodesic space. TFAE

- \bullet X is CAT(0).
- **②** For every triangle \triangle ([p, q], [q, r], [r, p]) $\subset X$ with $p \neq q$ and $p\neq r,$ if \triangle $([a,b],[b,c],[c,a])\subset \mathbb{R}^2$ is a triangle with $d(p, q) = d(a, b), d(p, r) = d(a, c)$ and $\measuredangle(b, a, c) = \alpha(q, p, r)$, then $d(q, r) > d(b, c)$.

Equivalently:

$$
w^2 \ge u^2 + v^2 - 2uv \cos \gamma.
$$

[Cosine rule](#page-60-0) [Inversion in metric spaces](#page-62-0)

Cosine rule

Recall:

Proposition

Let X be a geodesic space. TFAE

- \bullet X is CAT(0).
- **②** For every triangle \triangle ($[p, q], [q, r], [r, p]) \subset X$ with $p \neq q$ and $p\neq r,$ if \triangle $([a,b],[b,c],[c,a])\subset \mathbb{R}^2$ is a triangle with $d(p, q) = d(a, b), d(p, r) = d(a, c)$ and $\measuredangle(b, a, c) = \alpha(q, p, r)$, then $d(q, r) > d(b, c)$.

Equivalently:

$$
w^2 \ge u^2 + v^2 - 2uv \cos \gamma.
$$

[Cosine rule](#page-60-0) [Inversion in metric spaces](#page-63-0)

Ptolemy inequality

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$
d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).
$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

A geodesic space X is $CAT(0)$ if and only if it is Ptolemaic and Busemann convex.

Ptolemy inequality

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$
d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).
$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

Proposition

A geodesic space X is $CAT(0)$ if and only if it is Ptolemaic and Busemann convex.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \odot

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$
i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x, y \in X \setminus \{p\}.
$$

It is not a metric in general.

Let X be Ptolemaic, then i_n is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping \leftrightarrow farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$
i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x, y \in X \setminus \{p\}.
$$

It is not a metric in general.

Let X be Ptolemaic, then i_n is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping \leftrightarrow farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$
i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x, y \in X \setminus \{p\}.
$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_n is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping \leftrightarrow farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$
i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x, y \in X \setminus \{p\}.
$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_n is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping \leftrightarrow farthest point mapping.

[Warm-up](#page-60-0) [Metric projections](#page-68-0) [Final remarks](#page-91-0) [Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

1 [Warm-up](#page-60-0)

[Cosine rule](#page-60-0) [Inversion in metric spaces](#page-62-0)

2 [Metric projections](#page-68-0) **[Definitions](#page-69-0)** [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

³ [Final remarks](#page-91-0)

 $4.171 - 16$

 \rightarrow \Box

イヨト イヨト

 $E|E \cap Q$

[Definitions](#page-71-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the distance function as

$$
d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.
$$

For any $x \in X$ denote its projection onto C by

$$
P_C(x) = \{c \in C : d(x, c) = d_C(x)\}.
$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebyšev.

K ロ > K @ > K B > K B > [모] 보

 Ω

[Definitions](#page-71-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the distance function as

$$
d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.
$$

Definition

For any $x \in X$ denote its *projection* onto C by

$$
P_C(x) = \{c \in C : d(x, c) = d_C(x)\}.
$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebyšev.

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the distance function as

$$
d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.
$$

Definition

For any $x \in X$ denote its *projection* onto C by

$$
P_C(x) = \{c \in C : d(x, c) = d_C(x)\}.
$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebvšev.
[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Projections

Recall:

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is convex if, given $x, y \in M$, we have $[x, y] \subset M$.

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 19 Q @

[Definitions](#page-69-0) [Main theorem\(s\)](#page-76-0) [Weak convergence](#page-81-0)

Projections

Theorem

- Let X be CAT(0) and $C \subset X$ be complete convex. Then: \bullet C is Cebyšev.
	- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
	- \bigodot For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \rightarrow X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

イロメ マタメ マラメ イラメー

[Definitions](#page-69-0) [Main theorem\(s\)](#page-76-0) [Weak convergence](#page-81-0)

Projections

Theorem

- Let X be CAT(0) and $C \subset X$ be complete convex. Then: \bullet C is Cebyšev.
	- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
	- **3** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bigcirc P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \rightarrow X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_{C} .

イロメ マタメ マラメ イラメー

[Definitions](#page-69-0) [Main theorem\(s\)](#page-76-0) [Weak convergence](#page-81-0)

Projections

Theorem

Let X be CAT(0) and $C \subset X$ be complete convex. Then: \bullet C is Cebyšev.

- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \rightarrow X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_{C} .

イロメ マタメ マラメ スラメー

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Projections

Theorem

Let X be CAT(0) and $C \subset X$ be complete convex. Then: \bullet C is Cebyšev.

- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$
\alpha(x, P_C(x), y) \ge \frac{\pi}{2}.
$$

 \bullet P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \rightarrow X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

イロト イタト イミト イミト・ミヒー

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

 $\mathbf{0}$ d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \leq d(x, y)$.

 \bigcap By convexity of d.

 \bullet $d_C(x) \leq d(x, P_C(y)) \leq d(x, y) + d(y, P_C(y)) =$

K ロ > K @ > K B > K B > [모] 보

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

 $\mathbf{0}$ d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \leq d(x, y)$.

 \bigcap By convexity of d.

 \bullet d_C(x) < d(x, P_C(y)) < d(x, y) + d(y, P_C(y)) =

K ロ > K @ > K B > K B > [B] B

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

 $\mathbf{0}$ d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \leq d(x, y)$.

Proof.

 \bullet By convexity of d.

$$
\mathbf{Q} \ d_C(x) \le d(x, P_C(y)) \le d(x, y) + d(y, P_C(y)) =
$$

 $d(x, y) + d_C(y).$

イロト イ母 トイチト

- 4 로 커

국도

Proposition

Let X be a CAT(0) space and $C \subset X$ a Cebyšev set. If P_C is nonexpansive, then C is convex.

Proof.

By contradiction, suppose there are $x, y \in C$ such that the point $m \in [x, y]$ with $d(x, m) = d(m, y)$ is not in C. If both $d(x, P_C(m))$ and $d(y, P_C(m))$ were less than or equal to $d(x, m)$, we would have another geodesic from x to y distinct from $[x, y]$, namely $[x, P_C(m)] \cup [P_C(m), y]$. Without loss of generality, let $d(x, P_C(m)) > d(x, m)$. But this yields a contradiction, since $P_C(x) = x$ and P_C is nonexpansive.

《 ロ 》 《 部 》 《 君 》 《 君 》 【君 旨

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),
$$

and the asymptotic radius as

$$
r(x_n) = \inf_{x \in X} r(x_n, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_n) if

$$
r(x_n,x)=r(x_n).
$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

 $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),
$$

and the asymptotic radius as

$$
r(x_n) = \inf_{x \in X} r(x_n, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_n) if

$$
r(x_n,x)=r(x_n).
$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),
$$

and the asymptotic radius as

$$
r(x_n) = \inf_{x \in X} r(x_n, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_n) if

$$
r(x_n, x) = r(x_n).
$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),
$$

and the asymptotic radius as

$$
r(x_n) = \inf_{x \in X} r(x_n, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_n) if

$$
r(x_n, x) = r(x_n).
$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

Weak convergence

Definition

We shall say that $(x_n) \subset X$ weakly converges to a point $x \in X$ if x is the asymptotic center of each subsequence of (x_n) . We use the notation $x_n \stackrel{w}{\rightarrow} x$.

Clearly, if $x_n \to x$, then $x_n \stackrel{w}{\to} x$.

K ロ > K @ > K ミ > K ミ > (트)= 10 Q Q

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \stackrel{w}{\rightarrow} x$.

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \stackrel{w}{\rightarrow} x \in X$, then $x \in C$.

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n\stackrel{w}{\rightarrow}x,$

 $d_C(x) \leq \liminf_{n \to \infty} d_C(x_n)$

K ロ > K @ > K B > K B > (모)

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \stackrel{w}{\rightarrow} x$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \stackrel{w}{\rightarrow} x \in X$, then $x \in C$.

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n\stackrel{w}{\rightarrow}x,$

 $d_C(x) \leq \liminf_{n \to \infty} d_C(x_n)$

K ロ > K @ > K B > K B > (모)

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \stackrel{w}{\rightarrow} x$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \stackrel{w}{\rightarrow} x \in X$, then $x \in C$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n\stackrel{w}{\rightarrow}x,$

 $d_C(x) \leq \liminf_{n \to \infty} d_C(x_n)$

K ロ > K @ > K B > K B > [모] 보

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

An alternative proof

Theorem (Projection theorem revisited)

Let X be a CAT(0) space and $C \subset X$ complete convex. Then, for any $x \in X$, there exists a point $c \in C$ such that $d_C(x) = d(c, x)$.

Let $x \in X$. There exists $(c_n) \subset C$ such that $d(c_n, x) \to d_C(x)$. It is bounded, so a subsequence $\left(c_{n_k}\right)$ weakly converges to some $c \in X$. Since C is convex, $c \in C$. Now,

 $d_C(x) \leq d(x, c) \leq \liminf_{n \to \infty} d(x_n, c) = d_C(x).$

K ロ > K (ラ > K ミ > K ミ > (ミ)

[Definitions](#page-69-0) [Main theorem\(s\)](#page-73-0) [Weak convergence](#page-81-0)

An alternative proof

Theorem (Projection theorem revisited)

Let X be a CAT(0) space and $C \subset X$ complete convex. Then, for any $x \in X$, there exists a point $c \in C$ such that $d_C(x) = d(c, x)$.

Proof.

Let $x \in X$. There exists $(c_n) \subset C$ such that $d(c_n, x) \to d_C(x)$. It is bounded, so a subsequence $\left(c_{n_k}\right)$ weakly converges to some $c \in X$. Since C is convex, $c \in C$. Now,

$$
d_C(x) \le d(x, c) \le \liminf_{n \to \infty} d(x_n, c) = d_C(x).
$$

イロメ マ桐 レマ ラメ マラメ

Final remarks

- Projections are nonexpansive even in $CAT(1)$ spaces.
- Our assumptions: X a CAT(0) space and $C \subset X$ complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Final remarks

- Projections are nonexpansive even in $CAT(1)$ spaces.
- Our assumptions: X a CAT(0) space and $C \subset X$ complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

 $+$ $+$ $+$ $+$ $-$

 $A \equiv B + B \equiv C$ $B \equiv C$

Final remarks

- Projections are nonexpansive even in $CAT(1)$ spaces.
- Our assumptions: X a CAT(0) space and $C \subset X$ complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

 $E \rightarrow A E + E + 0.00$

Suggestions for our next talks

- Examples (hyperbolic spaces, manifolds, buildings,. . .)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Applications (phylogenetic trees, robotics)

 $E \rightarrow A E + E + 0.00$

Euclidean buildings

Miroslav Bačák

CARMA, University of Newcastle

13 April 2010

イロト イ団ト イヨ

 $\leftarrow \equiv$

 \rightarrow

 \rightarrow

 $E|E \cap Q$

Contents of the talk

O [Simplicial complexes](#page-97-0) [Gluing definition](#page-97-0) [Examples](#page-105-0)

[Metrizing definition](#page-108-0)

2 [Euclidean buildings](#page-115-0)

[Definition](#page-116-0) [Examples](#page-120-0) [Euclidean buildings are CAT\(0\)](#page-122-0)

3 [Final remarks](#page-128-0)

 \leftarrow \Box

A. \leftarrow \equiv \rightarrow $\leftarrow \equiv$ $E|E \cap Q$

[Gluing definition](#page-98-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Piecewise Euclidean simplicial complex

Definition

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a family of simplices $S_{\lambda} \subset \mathbb{R}^{n_{\lambda}}$. Let $X=\bigcup_{\lambda\in\Lambda} \left(S_{\lambda}\times\{\lambda\}\right)$. Let \sim be an equivalence relation and $K = X/\sim$. Let $p: X \to K$ be the projection and define $p_{\lambda}: S_{\lambda} \to K$ by $p_{\lambda} = p(\cdot, \lambda)$. Then K is a piecewise Euclidean simplicial complex if

1 the map p_{λ} is injective for every $\lambda \in \Lambda$,

2 if $p_{\lambda}(S_{\lambda}) \cap p_{\lambda'}(S_{\lambda'}) \neq \emptyset$, then there is an isometry $h_{\lambda,\lambda'}$ from a face $T_{\lambda} \subset S_{\lambda}$ onto a face $T_{\lambda'} \subset S_{\lambda'}$ such that $p_{\lambda}(x) = p_{\lambda'}(x')$ if and only if $x' = h_{\lambda, \lambda'}(x)$.

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 19 Q @

[Gluing definition](#page-97-0) **[Examples](#page-105-0)** [Metrizing definition](#page-108-0)

Piecewise Euclidean simplicial complex

Definition

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a family of simplices $S_{\lambda} \subset \mathbb{R}^{n_{\lambda}}$. Let $X=\bigcup_{\lambda\in\Lambda} \left(S_{\lambda}\times\{\lambda\}\right)$. Let \sim be an equivalence relation and $K = X/\sim$. Let $p: X \to K$ be the projection and define $p_{\lambda}: S_{\lambda} \to K$ by $p_{\lambda} = p(\cdot, \lambda)$. Then K is a piecewise Euclidean simplicial complex if

1 the map p_{λ} is injective for every $\lambda \in \Lambda$,

2 if $p_{\lambda}(S_{\lambda}) \cap p_{\lambda'}(S_{\lambda'}) \neq \emptyset$, then there is an isometry $h_{\lambda,\lambda'}$ from a face $T_{\lambda} \subset S_{\lambda}$ onto a face $T_{\lambda'} \subset S_{\lambda'}$ such that $p_{\lambda}(x) = p_{\lambda'}(x')$ if and only if $x' = h_{\lambda, \lambda'}(x)$.

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 19 Q @

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Intrinsic metric

 K comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in K from x to y is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m - 1$, there is a simplex $S(i)$ containing x_i and x_{i+1} .

Define the length of σ by

$$
\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).
$$

 $AB + AB + AB + AB + B = ABA$

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Intrinsic metric

 K comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in K from x to y is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m - 1$, there is a simplex $S(i)$ containing x_i and x_{i+1} .

Define the length of σ by

$$
\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).
$$

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Intrinsic metric

 K comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in K from x to y is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m - 1$, there is a simplex $S(i)$ containing x_i and x_{i+1} .

Define the *length* of σ by

$$
\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).
$$

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

 $d(x, y) = \inf \{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \}.$

Let $x \in K$. For a simplex S containing x, define

$$
\varepsilon(x,S)=\inf\left\{d_S(x,T):T\text{ a face of }S\text{ and }x\notin T\right\}
$$

 $\varepsilon(x) = \inf \{\varepsilon(x, S) : S \subset K \text{ simplex containing } x\}.$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space. K ロ > K @ > K ミ > K ミ > (트)= 10 Q Q

[Gluing definition](#page-97-0) **[Examples](#page-105-0)** [Metrizing definition](#page-108-0)

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

$$
d(x,y) = \inf \{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \}.
$$

Let $x \in K$. For a simplex S containing x, define

$$
\varepsilon(x,S)=\inf\left\{d_S(x,T):T\text{ a face of }S\text{ and }x\notin T\right\}
$$

and

 $\varepsilon(x) = \inf \{\varepsilon(x, S) : S \subset K \text{ simplex containing } x\}.$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space. K ロ > K @ > K ミ > K ミ > (트)= 10 Q Q

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

$$
d(x,y) = \inf \{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \}.
$$

Let $x \in K$. For a simplex S containing x, define

$$
\varepsilon(x,S)=\inf\left\{d_S(x,T):T\text{ a face of }S\text{ and }x\notin T\right\}
$$

and

$$
\varepsilon(x) = \inf \{\varepsilon(x, S) : S \subset K \text{ simplex containing } x\}.
$$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space. K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 19 Q @

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Examples of simplicial complexes

K ロ > K @ > K ミ > K ミ > (ミ)님 > > 0 Q (^

[Gluing definition](#page-97-0) **[Examples](#page-105-0)** [Metrizing definition](#page-108-0)

Examples of simplicial complexes

K ロ > K @ > K ミ > K ミ > - ミ|ㄹ -9 Q @

[Gluing definition](#page-97-0) **[Examples](#page-105-0)** [Metrizing definition](#page-108-0)

Examples of simplicial complexes

K ロ ▶ K @ ▶ K ヨ ▶ K ヨ ▶ - 퍼 ㅂ - 9 ٩.0*
[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-109-0)

Abstract simplicial complex

Definition

An abstract simplicial complex consists of of a set V and a collection S of (nonempty) finite subsets of V, such that

- $\{v\} \in \mathcal{S}$ for all $v \in V$,
- if $S \in \mathcal{S}$, then any nonempty subset T of S belongs to S.

We call elements of V vertices and elements of S simplices.

- 4 何 ト 4 戸 ト 4 戸 ト

 $E|E$ \cap \cap

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Abstract simplicial complex

Definition

An abstract simplicial complex consists of of a set V and a collection S of (nonempty) finite subsets of V, such that

- $\{v\} \in \mathcal{S}$ for all $v \in V$,
- if $S \in \mathcal{S}$, then any nonempty subset T of S belongs to S.

We call elements of V vertices and elements of S simplices.

- 4 何 ト 4 戸 ト 4 戸 ト

 $E|E$ \cap \cap

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* $|S|$ of a simplex $S \subset K$ is the convex hull of S in W.

 $|S|$ inherits the Euclidean topology.

The affine realization of K is

 $|K| = \bigcup \{ |S| : S \subset K \}.$

 $AB + AB + AB + AB + AB + ACA$

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* $|S|$ of a simplex $S \subset K$ is the convex hull of S in W.

 $|S|$ inherits the Euclidean topology.

The affine realization of K is

 $|K| = \bigcup \{ |S| : S \subset K \}.$

 $AB + AB + AB + AB + AB + ACA$

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* $|S|$ of a simplex $S \subset K$ is the convex hull of S in W.

 $|S|$ inherits the Euclidean topology.

The affine realization of K is

 $|K| = \bigcup \{ |S| : S \subset K \}.$

K @ ▶ K 로 ▶ K 로 ▶ _로 E YO Q @

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Metrizing affine realization

Alternative definition of piecewise Euclidean simplicial complex:

Definition

A piecewise Euclidean simplicial complex consists of:

- an abstract simplicial complex,
- a set $\mathrm{Shapes}(K)$ of simplices $S_i' \subset \mathbb{E}^{n_i}$
- for any simplex S in the affine realization of K, an affine isomorphism $f_s: S' \to S$, where $S' \in \mathrm{Shapes}(K)$. If T is a face of S , then f_S^{-1} $S^{-1}\circ f_S$ is required to be an isometry from T' onto a face of S .

Using piecewise linear path, we define the intrinsic pseudometric.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

[Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

Metrizing affine realization

Alternative definition of piecewise Euclidean simplicial complex:

Definition

A piecewise Euclidean simplicial complex consists of:

- an abstract simplicial complex,
- a set $\mathrm{Shapes}(K)$ of simplices $S_i' \subset \mathbb{E}^{n_i}$
- for any simplex S in the affine realization of K, an affine isomorphism $f_s: S' \to S$, where $S' \in \mathrm{Shapes}(K)$. If T is a face of S , then f_S^{-1} $S^{-1}\circ f_S$ is required to be an isometry from T' onto a face of S .

Using piecewise linear path, we define the intrinsic pseudometric.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

⁰ [Simplicial complexes](#page-97-0) [Gluing definition](#page-97-0) [Examples](#page-105-0) [Metrizing definition](#page-108-0)

2 [Euclidean buildings](#page-115-0)

[Definition](#page-116-0) [Examples](#page-120-0) [Euclidean buildings are CAT\(0\)](#page-122-0)

³ [Final remarks](#page-128-0)

 $4.171 - 16$

 \rightarrow \equiv \rightarrow

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

 $E|E \cap Q$

[Definition](#page-119-0) [Examples](#page-120-0) [Euclidean buildings are CAT\(0\)](#page-122-0)

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- $\bullet X$ is a union of a collection A of subcomplexes E, called apartments, such that d_E makes (E,d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- \bullet Any two simplices A, B are contained in an apartment.
- $\boldsymbol{\mathsf{S}}$ Given two apartments E, E' containing A and $B,$ there exists a simplicial isometry from (E,d_E) onto (E^\prime,d_{E^\prime}) which leaves A and B fixed.

The *n*-simplices are called *chambers.*

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

[Examples](#page-120-0) [Euclidean buildings are CAT\(0\)](#page-122-0)

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- $\bullet X$ is a union of a collection A of subcomplexes E, called apartments, such that d_E makes (E,d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- Any two simplices A, B are contained in an apartment.
- $\boldsymbol{\mathsf{S}}$ Given two apartments E, E' containing A and $B,$ there exists a simplicial isometry from (E,d_E) onto (E^\prime,d_{E^\prime}) which leaves A and B fixed.

The *n*-simplices are called *chambers.*

イロト イ押 トラ ミトラ ミト

 $E|E \cap \Omega$

[Simplicial complexes](#page-97-0) [Euclidean buildings](#page-115-0) [Final remarks](#page-128-0) [Definition](#page-119-0) [Examples](#page-120-0)

[Euclidean buildings are CAT\(0\)](#page-122-0)

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- $\bullet X$ is a union of a collection A of subcomplexes E, called apartments, such that d_E makes (E,d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- Any two simplices A, B are contained in an apartment.
- $\boldsymbol{3}$ Given two apartments E, E' containing A and $B,$ there exists a simplicial isometry from (E,d_E) onto $(E^{\prime},d_{E^{\prime}})$ which leaves A and B fixed.

The n -simplices are called *chambers.*

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

[Simplicial complexes](#page-97-0) [Euclidean buildings](#page-115-0) [Final remarks](#page-128-0) [Definition](#page-116-0) [Examples](#page-120-0)

[Euclidean buildings are CAT\(0\)](#page-122-0)

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- $\bullet X$ is a union of a collection A of subcomplexes E, called apartments, such that d_E makes (E,d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- Any two simplices A, B are contained in an apartment.
- $\boldsymbol{3}$ Given two apartments E, E' containing A and $B,$ there exists a simplicial isometry from (E,d_E) onto $(E^{\prime},d_{E^{\prime}})$ which leaves A and B fixed.

The *n*-simplices are called *chambers*.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

This is a building:

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ [君]ヨ 19 9 0

This is not a building:

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ [君]ヨ 19 9 0

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete $CAT(0)$ space.

Let C be a chamber in an apartment $E \subset X$. Define a retraction $\rho_{C,E}: X \to E$ by

where E^\prime is an apartment containing both x and $C,$ and $\phi_{E,E'}:E'\rightarrow E$ is the unique isometry between E' and $E.$

Then $\rho_{CE}: X \to E$ is a nonexpansive simplicial retraction.

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete $CAT(0)$ space.

Let C be a chamber in an apartment $E \subset X$. Define a retraction $\rho_{C,E}: X \to E$ by

$$
\rho_{C,E}(x) = \phi_{E,E'}(x)
$$

where E^\prime is an apartment containing both x and $C,$ and $\phi_{E,E'}: E'\rightarrow E$ is the unique isometry between E' and $E.$

Then $\rho_{CE}: X \to E$ is a nonexpansive simplicial retraction.

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete $CAT(0)$ space.

Let C be a chamber in an apartment $E \subset X$. Define a retraction $\rho_{C,E}: X \to E$ by

$$
\rho_{C,E}(x) = \phi_{E,E'}(x)
$$

where E^\prime is an apartment containing both x and $C,$ and $\phi_{E,E'}: E'\rightarrow E$ is the unique isometry between E' and $E.$

Then $\rho_{CE}: X \to E$ is a nonexpansive simplicial retraction.

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let $[x, y]$ be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$
d^{2}(z,p) \le (1-t)d^{2}(z,x) + td^{2}(z,y) - t(1-t)d^{2}(x,y).
$$

But it follows from:

 $d^2(\rho(z),p) \leq (1-t)d^2(\rho(z),x) + td^2(\rho(z),y) - t(1-t)d^2(x,y).$

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let $[x, y]$ be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$
d^{2}(z,p) \leq (1-t)d^{2}(z,x) + td^{2}(z,y) - t(1-t)d^{2}(x,y).
$$

But it follows from:

 $d^2(\rho(z),p) \leq (1-t)d^2(\rho(z),x) + td^2(\rho(z),y) - t(1-t)d^2(x,y).$

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let $[x, y]$ be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$
d^{2}(z,p) \le (1-t)d^{2}(z,x) + td^{2}(z,y) - t(1-t)d^{2}(x,y).
$$

But it follows from:

$$
d^2\left(\rho(z),p\right)\leq (1-t)d^2\left(\rho(z),x\right)+td^2\left(\rho(z),y\right)-t(1-t)d^2(x,y).
$$

⁰ [Simplicial complexes](#page-97-0) [Gluing definition](#page-97-0)

- [Examples](#page-105-0)
- [Metrizing definition](#page-108-0)

2 [Euclidean buildings](#page-115-0)

[Definition](#page-116-0) [Examples](#page-120-0) [Euclidean buildings are CAT\(0\)](#page-122-0)

3 [Final remarks](#page-128-0)

 $4.171 - 16$

 \leftarrow \overline{m} \rightarrow

 \rightarrow \rightarrow \rightarrow

 $\rightarrow \equiv$ >

 $E|E \cap Q$

Final remarks

- M. Davis (1998) showed that **all** buildings are $CAT(0)$.
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: W -metric spaces. This approach does not use apartments.

 $4.171 - 16$

イタト イラト

- 4 E +

 $E|E \cap \Omega$

Final remarks

- M. Davis (1998) showed that **all** buildings are $CAT(0)$.
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: W -metric spaces. This approach does not use apartments.

 $4.171 - 16$

 \mathcal{A} \mathcal{B} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

 \rightarrow \equiv

 $E|E \cap \Omega$

Final remarks

- M. Davis (1998) showed that **all** buildings are $CAT(0)$.
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: W -metric spaces. This approach does not use apartments.

 $4.171 - 16$

 $E|E \cap Q$

Modern definition of buildings

We start with a Coxeter system (W, S) , where

- W is a (reflection) group
- S is a set of generators of W.

A building is a pair (C, δ) where C is a nonempty set (of chambers) and a 'distance' function $\delta: \mathcal{C} \times \mathcal{C} \rightarrow W$ such that

- $\mathbf{0} \delta(C, D) = 1$ if and only if $C = D$.
- \bullet If $\delta(C,D)=w,$ and $C'\in\mathcal{C}$ satisfies $\delta(C',C)=s\in S,$ then $\delta(C', D) = sw$ or w. If, in addition, $\ell(sw) = \ell(w) + 1$, then $\delta(C', D) = sw.$
- **3** If $\delta(C, D) = w$, then for any $s \in S$ there is a chamber $C' \in \mathcal{C}$ such that $\delta(C', C) = s$ and $\delta(C', D) = sw$.

 $4.71 + 4.77 + 4.77 + 4.77 + 7.79$ \wedge

Modern definition of buildings

We start with a Coxeter system (W, S) , where

- W is a (reflection) group
- S is a set of generators of W.

A building is a pair (C, δ) where C is a nonempty set (of chambers) and a 'distance' function $\delta: \mathcal{C} \times \mathcal{C} \rightarrow W$ such that

- \bullet $\delta(C, D) = 1$ if and only if $C = D$.
- **D** If $\delta(C, D) = w$, and $C' \in \mathcal{C}$ satisfies $\delta(C', C) = s \in S$, then $\delta(C', D) = sw$ or w. If, in addition, $\ell(sw) = \ell(w) + 1$, then $\delta(C', D) = sw.$
- **3** If $\delta(C, D) = w$, then for any $s \in S$ there is a chamber $C' \in \mathcal{C}$ such that $\delta(C', C) = s$ and $\delta(C', D) = sw$.

Suggestions for our next talks

- Examples (hyperbolic spaces, Riemannian manifolds,. . .)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Groups and CAT(0) spaces
- Applications (phylogenetic trees, robotics,. . .)

 $E|E \cap \Omega$

The weak topology on CAT(0) spaces

Miroslav Bačák

CARMA, University of Newcastle

20 April 2010

 $4.171 - 16$

 $\mathcal{A} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B} \cap \mathcal{B}$

 $\alpha \equiv \alpha$

 \equiv

 OQ

Overview

- 1976: Lim defined Δ -convergence in metric spaces
- 2004: Sosov defined Φ-convergence in metric spaces
- 2008: Kirk and Panyanak used Δ -convergence in CAT(0), and asked for topology
- 2009: Espínola and Fernández-León modified Φ -convergence to get equivalent condition for Δ -convergence in CAT(0)
- 2009: (M.B.) definition of a topology that corresponds to the above convergence

イロト イ部 トイヨ トイヨト

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),
$$

and the asymptotic radius as

$$
r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_{ν}) if

$$
r(x_{\nu},x)=r(x_{\nu}).
$$

Recall that the asymptotic center of (x_ν) exists and is unique, if X is a complete CAT(0) space. イロメ マ桐 レマ ラメ マラメ

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),
$$

and the asymptotic radius as

$$
r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_{ν}) if

$$
r(x_{\nu},x)=r(x_{\nu}).
$$

Recall that the asymptotic center of (x_ν) exists and is unique, if X is a complete CAT(0) space. イロメ マ桐 レマ ラメ マラメ

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),
$$

and the asymptotic radius as

$$
r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_{ν}) if

$$
r(x_{\nu},x)=r(x_{\nu}).
$$

Recall that the asymptotic center of (x_ν) exists and is unique, if X is a complete CAT(0) space. イロト イ押 トイラト イラトー

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its asymptotic radius about a given point $x \in X$ as

$$
r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),
$$

and the asymptotic radius as

$$
r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).
$$

Further, we say that a point $x \in X$ is the asymptotic center of (x_{ν}) if

$$
r(x_{\nu},x)=r(x_{\nu}).
$$

Recall that the asymptotic center of (x_ν) exists and is unique, if X is a complete CAT(0) space. イロメ マ桐 レマ ラメ マラメ

Weak convergence

Definition (Lim)

We shall say that $(x_\nu) \subset X$ weakly converges to a point $x \in X$ if x is the asymptotic center of each subnet of (x_{ν}) . We use the notation $x_{\nu} \stackrel{\dot{w}}{\rightarrow} x$.

Clearly, if $x_{\nu} \to x$, then $x_{\nu} \stackrel{w}{\to} x$.

イロト イ押 トラ ミトラ ミト

Weak convergence

Proposition (Espínola, Fernández-León)

Let (X, d) be a complete CAT(0) space, $(x_n) \subset X$ be a bounded sequence and $x \in X$. Then $x_n \stackrel{\omega}{\to} x$ if and only if, for any geodesic γ through x we have $d(x, P_{\gamma}(x_n)) \to 0$.

 OQ

Weak topology

Definition (M.B. 2009)

Let X be a complete CAT(0) space. A set $M \subset X$ is open if, for any $x_0 \in M$, there are $\varepsilon > 0$ and a finite family of nontrivial geodesics $\gamma_1, \ldots, \gamma_N$ through x_0 such that

$$
U_{x_0}(\varepsilon, \gamma_1, \ldots, \gamma_N) = \{x \in X : d(x_0, P_{\gamma_i}(x)) < \varepsilon, i = 1, \ldots, N\}
$$

is contained in M. Denote τ the collection of all open sets of X.

The sets $U_{x_0}(\varepsilon,\gamma_1,\dots,\gamma_N)$ are convex iff X has the property (N).

イロン イ部ン イミン イミン

つのへ
Weak topology

Definition (M.B. 2009)

Let X be a complete CAT(0) space. A set $M \subset X$ is open if, for any $x_0 \in M$, there are $\varepsilon > 0$ and a finite family of nontrivial geodesics $\gamma_1, \ldots, \gamma_N$ through x_0 such that

$$
U_{x_0}(\varepsilon, \gamma_1, \ldots, \gamma_N) = \{x \in X : d(x_0, P_{\gamma_i}(x)) < \varepsilon, \ i = 1, \ldots, N\}
$$

is contained in M. Denote τ the collection of all open sets of X.

The sets $U_{x_0}(\varepsilon,\gamma_1,\ldots,\gamma_N)$ are convex iff X has the property (N).

イロト イ部 トイミト イミトー

Weak topology

 $U_{x_0}(\varepsilon,\gamma_1,\gamma_2,\gamma_3)$

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

\bullet τ is a Hausdorff topology on X,

- $\bullet \,\, x_{\nu} \stackrel{\tau}{\rightarrow} x$ if and only if $x_{\nu} \stackrel{w}{\rightarrow} x,$ for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- \bullet τ is the $\sigma(X,X^*)$ -topology when X is a Hilbert space.
- \bullet τ is not metrizable in general.

イロト イ何ト イラト イラト

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- \bullet τ is a Hausdorff topology on X,
- $\bm{2}$ $x_{\nu} \stackrel{\tau}{\rightarrow} x$ if and only if $x_{\nu} \stackrel{w}{\rightarrow} x,$ for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- \bullet τ is the $\sigma(X,X^*)$ -topology when X is a Hilbert space.
- \bullet τ is not metrizable in general.

イロト イ何ト イラト イラト

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- $\mathbf{0}$ τ is a Hausdorff topology on X.
- $\bm{2}$ $x_{\nu} \stackrel{\tau}{\rightarrow} x$ if and only if $x_{\nu} \stackrel{w}{\rightarrow} x,$ for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- \bullet τ is the $\sigma(X,X^*)$ -topology when X is a Hilbert space.
- \bullet τ is not metrizable in general.

イロメ マ桐 レマ ラメ マラメ

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- $\mathbf{0}$ τ is a Hausdorff topology on X.
- $\bm{2}$ $x_{\nu} \stackrel{\tau}{\rightarrow} x$ if and only if $x_{\nu} \stackrel{w}{\rightarrow} x,$ for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- \bullet τ is the $\sigma(X,X^*)$ -topology when X is a Hilbert space.
- \bullet τ is not metrizable in general.

イロメ マ桐 レマ ラメ マラメ

つくい

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- $\mathbf 0$ τ is a Hausdorff topology on X.
- $\bm{2}$ $x_{\nu} \stackrel{\tau}{\rightarrow} x$ if and only if $x_{\nu} \stackrel{w}{\rightarrow} x,$ for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- \bullet τ is the $\sigma(X,X^*)$ -topology when X is a Hilbert space.
- \bullet τ is not metrizable in general.

イロメ マ桐 レマ ラメ マラメ

つくい

Properties of the weak topology

The weak topology in Banach spaces:

 $compactness = sequential compactness = countable compactness$

But not in CAT(0) spaces!

Consider a countable set $\{x_1, x_2, \ldots, x_{\infty}\}$, and for every $n \in \mathbb{N}$, join x_{∞} with x_n by a geodesic of length $n.$ Then $x_n\stackrel{w}{\rightarrow}x_{\infty},$ but is unbounded. X is sequentially w-compact, but not (countably) w −compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C} = \overline{C}^w.$

イロト イ何ト イラト イラト

Properties of the weak topology

The weak topology in Banach spaces:

 $compactness = sequential compactness = countable compactness$

But not in CAT(0) spaces!

Example

Consider a countable set $\{x_1, x_2, \ldots, x_{\infty}\}$, and for every $n \in \mathbb{N}$, join x_{∞} with x_n by a geodesic of length n. Then $x_n \stackrel{w}{\rightarrow} x_{\infty}$, but is unbounded. X is sequentially w-compact, but not (countably) w−compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C} = \overline{C}^w.$

イロト イ何ト イラト イラト

Properties of the weak topology

The weak topology in Banach spaces:

 $compactness = sequential compactness = countable compactness$

But not in CAT(0) spaces!

Example

Consider a countable set $\{x_1, x_2, \ldots, x_{\infty}\}$, and for every $n \in \mathbb{N}$, join x_{∞} with x_n by a geodesic of length n. Then $x_n \stackrel{w}{\rightarrow} x_{\infty}$, but is unbounded. X is sequentially w-compact, but not (countably) w−compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C} = \overline{C}^w.$

イロト イ部ト イミト イミト

Open problems

- Let (X, d) be a complete CAT(0) space.
	- **■** Let (x_n) \subset X be a bounded sequence weakly converging to a point $x \in X$. Is then the case that

$$
\{x\} = \bigcap_{n \in \mathbb{N}} \overline{\text{co}} \, \{x_n, x_{n+1}, \dots\}?
$$

Note: "⊂" is known. The converse is true if we assume the property (N).

- **2** Suppose $C \subset X$ is compact. Is $\overline{co} C$ compact?
- **3** Is the weak topology restricted on balls metrizable?

イロト イ押 トラ ミトラ ミト