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Geodesics

Let (X, d) be a metric space. A geodesic joining x ∈ X to y ∈ X
is a mapping γ : [0, d(x, y)]→ X such that

• γ(0) = x,

• γ (d(x, y)) = y,

• d (γ(t1), γ(t2)) = |t1 − t2| for any t1, t2 ∈ [0, d(x, y)] .

X is a (uniquely) geodesic metric space if any two points are
connected by a (unique) geodesic.
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Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists
of three point p, q, r ∈ X and three geodesics [p, q], [q, r], [r, p].
Denote 4 ([p, q], [q, r], [r, p]) .

For such a triangle, there is a comparison triangle 4(p, q, r) ⊂ R2 :

• d(p, q) = d(p, q)

• d(q, r) = d(q, r)

• d(r, p) = d(r, p)
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Length space

Let (X, d) be a metric space. A curve is a continuous mapping
from a compact interval to X.

The length of a curve γ : [a, b]→ X is

`(γ) = sup
P

n−1∑
i=1

d (γ(ti), γ(ti+1)) ,

where P stands for the set of partitions of [a, b].

Definition

(X, d) is a length space if for any x, y ∈ X we have

d(x, y) = inf {`(γ) : γ joins x, y} .
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Definition

Let X be a geodesic space. We define the Alexandrov angle
between two geodesics γ1 : [0, t1]→ X and γ2 : [0, t2]→ X with
γ1(0) = γ2(0) by

α (γ1, γ2) = lim sup
t1,t2→0

] (γ1(t1), γ1(0), γ2(t2)) .

So, the angle is a number from [0, π]. In CAT(0) spaces:

• one can take lim in place of lim sup,
• α (γ1, γ2) = limt→0 2 arcsin 1

2td (γ1(t), γ2(t)) ,
• for a fixed p ∈ X the function α(·, p, ·) is continuous on X2,

• the function α(·, ·, ·) is usc on X3. . .
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Definition (CAT(0) space)

Let (X, d) be a geodesic space. It is a CAT(0) space if for any
geodesic triangle 4 ⊂ X and x, y ∈ 4 we have d(x, y) ≤ d(x, y),
where x, y ∈ 4.

X R2
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d(x,y) d(x,y)
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Basic properties

Let X be a CAT(0) space. Then we have

1 For each x, y ∈ X there is a unique geodesic connecting x, y.

2 Geodesics vary continuously with their end points.

3 X is Ptolemaic, i.e. the Ptolemy inequality holds:

d(x, y)d(u, v) ≤ d(x, u)d(y, v) + d(x, v)d(y, u).

4 X is Busemann convex, i.e. for geodesics γ1, γ2 : [a, b]→ X
the function t 7→ d (γ1(t), γ2(t)) , t ∈ [a, b] is convex.
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Proposition

Let X be a complete metric space. Then X is a length space if
and only if for any x, y ∈ X and δ > 0 there is m ∈ X such that

max {d(x,m), d(y,m)} ≤ 1
2
d(x, y) + δ.

Proposition (Menger)

Let X be a complete metric space. Then X is geodesic if and only
if for any x, y ∈ X there exists m ∈ X such that

d(x,m) = d(m, y) =
1
2
d(x, y).
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Proposition

Let X be a complete metric space. The following conditions are
equivalent.

1 X is a CAT(0) space.

2 For any a, b ∈ X and δ > 0 there is m ∈ X such that
max {d(a,m), d(b,m)} ≤ 1

2d(a, b) + δ, and for any
x1, x2, y1, y2 ∈ X there exist x̄1, x̄2, ȳ1, ȳ2 ∈ R2 such that
d(xi, yj) = d(x̄i, ȳj) for i, j ∈ {1, 2}, and
d(x1, x2) ≤ d(x̄1, x̄2) and d(y1, y2) ≤ d(ȳ1, ȳ2).
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Proposition

Let X be a geodesic space. TFAE

1 X is a CAT(0) space.

2 For every triangle 4 ([p, q], [q, r], [r, p]) ⊂ X and every
x ∈ [q, r], we have

d(x, p) ≤ d(x̄, p̄).

3 For every triangle 4 ([p, q], [q, r], [r, p]) ⊂ X and every
x ∈ [p, q], y ∈ [p, r] with x 6= p and y 6= p, we have

](x̄, p̄, ȳ) ≤ ](q̄, p̄, r̄).
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Proposition (...continued)

4 The angle between the sides of any geodesic triangle in X
with distinct vertices is no greater than the angle between the
corresponding sides of its comparison triangle.

5 For every triangle 4 ([p, q], [q, r], [r, p]) ⊂ X with p 6= q and
p 6= r, if 4 ([a, b], [b, c], [c, a]) ⊂ R2 is a triangle with
d(p, q) = d(a, b), d(p, r) = d(a, c) and ](b, a, c) = α(q, p, r),
then d(q, r) ≥ d(b, c)

6 For any x, y, z ∈ X and m ∈ X with
2d(y,m) = 2d(m, z) = d(y, z) we have

d(x, y)2 + d(x, z)2 ≥ 2d(x,m)2 +
1
2
d(y, z)2.
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Equivalent conditions

A metric space is Ptolemaic if the Ptolemy inequality holds:

d(x, y)d(u, v) ≤ d(x, u)d(y, v) + d(x, v)d(y, u).

A geodesic space is Busemann convex if for any γ1, γ2 : [a, b]→ X
the function t 7→ d (γ1(t), γ2(t)) , t ∈ [a, b] is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and
Busemann convex.
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Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any x, y, u, v ∈ X
we have

d(x, u)2 + d(y, v)2 ≤ d(x, y)2 + d(y, u)2 + d(u, v)2 + d(v, x)2

Remark

• Answers a question of Gromov

• Roundness 2 (Enfo)

• The inequality holds for instance for the metric space
(Y, σ1/2) where (Y, σ) is an arbitrary metric space.
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Examples

1 Hilbert spaces – the only Banach spaces which are CAT(0)

2 R-trees: a metric space T is an R-tree if
• for x, y ∈ T there is a unique geodesic [x, y]
• if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z]

3 Classical hyperbolic spaces Hn

4 Complete simply connected Riemannian manifolds with
nonpositive sectional curvature

5 Euclidean buildings, . . .
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Miroslav Bačák Introduction to CAT(0) spaces



Geodesics and angles
CAT(0) spaces

Examples
Metric projections

Open problems

Examples

1 Hilbert spaces – the only Banach spaces which are CAT(0)

2 R-trees: a metric space T is an R-tree if
• for x, y ∈ T there is a unique geodesic [x, y]
• if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z]

3 Classical hyperbolic spaces Hn

4 Complete simply connected Riemannian manifolds with
nonpositive sectional curvature

5 Euclidean buildings, . . .
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Miroslav Bačák Introduction to CAT(0) spaces



Geodesics and angles
CAT(0) spaces

Examples
Metric projections

Open problems

Examples

1 Hilbert spaces – the only Banach spaces which are CAT(0)

2 R-trees: a metric space T is an R-tree if
• for x, y ∈ T there is a unique geodesic [x, y]
• if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z]

3 Classical hyperbolic spaces Hn

4 Complete simply connected Riemannian manifolds with
nonpositive sectional curvature

5 Euclidean buildings, . . .
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Projections

Definition

Let X be a uniquely geodesic space. A set M ⊂ X is convex if,
given x, y ∈M, we have [x, y] ⊂M.

Let (X, d) be a complete CAT(0) space and C ⊂ X be a convex
closed set. Define the distance function by

d(x,C) = inf
c∈C

d(x, c), x ∈ X.
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Proposition

Let C ⊂ X be closed and convex. Then

1 for every x ∈ X, there exists a unique point PC(x) ∈ C such
that d (x, PC(x)) = d(x,C).

2 For any y ∈ [x, PC(x)] we have PC(y) = PC(x).
3 For any x ∈ X \ C and y ∈ C \ {PC(x)} we have

α (x, PC(x), y) ≥ π

2
.

4 PC is a nonexpansive retraction onto C.

The mapping PC : X → X is called a projection onto C.
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Property (N)
A non-empty intersection

Nice projections on geodesics

Definition

We shall say that X has the property (N) if, given a geodesic γ
and x, y ∈ X, we have that Pγ(m) lies on the geodesic from Pγ(x)
to Pγ(y), for any m ∈ [x, y].

Do all complete CAT(0) spaces have the property (N)?
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A non-empty intersection

. . . on the blackboard
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Next topics

Suggestions for our next talks

• Examples (hyperbolic spaces, manifolds, buildings,. . . )

• Connections to Banach space geometry

• Topologies on CAT(0) spaces

• Alternating projections

• Fixed point theory

• Applications (phylogenetic trees)
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Cosine rule

Recall:

Proposition

Let X be a geodesic space. TFAE

1 X is CAT(0).

2 For every triangle 4 ([p, q], [q, r], [r, p]) ⊂ X with p 6= q and
p 6= r, if 4 ([a, b], [b, c], [c, a]) ⊂ R2 is a triangle with
d(p, q) = d(a, b), d(p, r) = d(a, c) and ](b, a, c) = α(q, p, r),
then d(q, r) ≥ d(b, c).

Equivalently:
w2 ≥ u2 + v2 − 2uv cos γ.
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Cosine rule
Inversion in metric spaces

Ptolemy inequality

A metric space is Ptolemaic if the Ptolemy inequality holds:

d(x, y)d(u, v) ≤ d(x, u)d(y, v) + d(x, v)d(y, u).

A geodesic space is Busemann convex if for any γ1, γ2 : [a, b]→ X
the function t 7→ d (γ1(t), γ2(t)) , t ∈ [a, b] is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and
Busemann convex.
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Miroslav Bačák Metric projections onto convex sets



Warm-up
Metric projections

Final remarks

Cosine rule
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Inversion about sphere

Let (X, d) be a metric space. Fix p ∈ X. Define

ip(x, y) =
d(x, y)

d(x, p)d(p, y)
x, y ∈ X \ {p}.

It is not a metric in general.

Proposition

Let X be Ptolemaic, then ip is a metric on X \ {p}.

Inversion: nearest point mapping ! farthest point mapping.
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Definitions
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Weak convergence

Projections

Definition

Let (X, d) be a metric space and C ⊂ X. Define the distance
function as

dC(x) = inf
c∈C

d(x, c), x ∈ X.

Definition

For any x ∈ X denote its projection onto C by

PC(x) = {c ∈ C : d(x, c) = dC(x)} .

If the set PC(x) is a singleton, for every x ∈ X, we say C is
Čebyšev.
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Projections

Recall:

Definition

Let X be a uniquely geodesic space. A set M ⊂ X is convex if,
given x, y ∈M, we have [x, y] ⊂M.
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Definitions
Main theorem(s)
Weak convergence

Projections

Theorem

Let X be CAT(0) and C ⊂ X be complete convex. Then:

1 C is Čebyšev.

2 For any y ∈ [x, PC(x)] we have PC(y) = PC(x).
3 For any x ∈ X \ C and y ∈ C \ {PC(x)} we have

α (x, PC(x), y) ≥ π

2
.

4 PC is a nonexpansive retraction onto C. The map
H : X × [0, 1]→ X sending (x, t) to the point a distance
td (x, PC(x)) from x on [x, PC(x)] is a continuous homotopy
from Id to PC .
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Definitions
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Convexity of dC

Proposition

Let X be a CAT(0) space and C ⊂ X convex complete. Then:

1 dC is convex.

2 For all x, y we have |dC(x)− dC(y)| ≤ d(x, y).

Proof.

1 By convexity of d.

2 dC(x) ≤ d (x, PC(y)) ≤ d (x, y) + d (y, PC(y)) =
d(x, y) + dC(y).
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Proposition

Let X be a CAT(0) space and C ⊂ X a Čebyšev set. If PC is
nonexpansive, then C is convex.

Proof.

By contradiction, suppose there are x, y ∈ C such that the point
m ∈ [x, y] with d(x,m) = d(m, y) is not in C. If both
d (x, PC(m)) and d (y, PC(m)) were less than or equal to d(x,m),
we would have another geodesic from x to y distinct from [x, y],
namely [x, PC(m)] ∪ [PC(m), y] . Without loss of generality, let
d (x, PC(m)) > d(x,m). But this yields a contradiction, since
PC(x) = x and PC is nonexpansive.
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Weak convergence

Suppose (xn) ⊂ X is a bounded sequence and define its
asymptotic radius about a given point x ∈ X as

r(xn, x) = lim sup
n→∞

d(xn, x),

and the asymptotic radius as

r(xn) = inf
x∈X

r(xn, x).

Further, we say that a point x ∈ X is the asymptotic center of
(xn) if

r(xn, x) = r(xn).

Recall that the asymptotic center of (xn) exists and is unique, if X
is a complete CAT(0) space.
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Weak convergence

Definition

We shall say that (xn) ⊂ X weakly converges to a point x ∈ X if
x is the asymptotic center of each subsequence of (xn). We use
the notation xn

w→ x.

Clearly, if xn → x, then xn
w→ x.
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Lemma

Let X be a CAT(0) space and (xn) ⊂ X a bounded sequence.
Then there is a subsequence (xnk

) of (xn) and a point x ∈ X such

that xn
w→ x.

Lemma

Let X be a CAT(0) space and C ⊂ X closed convex. If (xn) ⊂ C
and xn

w→ x ∈ X, then x ∈ C.

Lemma

Let X be a CAT(0) space and C ⊂ X closed convex. The distance
function dC is weakly (sequentially) lsc, i.e., for any xn

w→ x,

dC(x) ≤ lim inf
n→∞

dC(xn)
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An alternative proof

Theorem (Projection theorem revisited)

Let X be a CAT(0) space and C ⊂ X complete convex. Then, for
any x ∈ X, there exists a point c ∈ C such that dC(x) = d(c, x).

Proof.

Let x ∈ X. There exists (cn) ⊂ C such that d(cn, x)→ dC(x). It
is bounded, so a subsequence (cnk

) weakly converges to some
c ∈ X. Since C is convex, c ∈ C. Now,

dC(x) ≤ d(x, c) ≤ lim inf
n→∞

d(xn, c) = dC(x).
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Final remarks

• Projections are nonexpansive even in CAT(1) spaces.

• Our assumptions: X a CAT(0) space and C ⊂ X complete
convex.

• Still things to do: e.g., are weakly closed Čebyšev sets convex?

Miroslav Bačák Metric projections onto convex sets



Warm-up
Metric projections

Final remarks

Final remarks

• Projections are nonexpansive even in CAT(1) spaces.

• Our assumptions: X a CAT(0) space and C ⊂ X complete
convex.

• Still things to do: e.g., are weakly closed Čebyšev sets convex?
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Suggestions for our next talks

• Examples (hyperbolic spaces, manifolds, buildings,. . . )

• Connections to Banach space geometry

• Topologies on CAT(0) spaces

• Alternating projections

• Fixed point theory

• Applications (phylogenetic trees, robotics)
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2 Euclidean buildings
Definition
Examples
Euclidean buildings are CAT(0)

3 Final remarks
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Piecewise Euclidean simplicial complex

Definition

Let (Sλ)λ∈Λ be a family of simplices Sλ ⊂ Rnλ . Let
X =

⋃
λ∈Λ (Sλ × {λ}) . Let ∼ be an equivalence relation and

K = X/ ∼ . Let p : X → K be the projection and define
pλ : Sλ → K by pλ = p(·, λ). Then K is a piecewise Euclidean
simplicial complex if

1 the map pλ is injective for every λ ∈ Λ,
2 if pλ(Sλ) ∩ pλ′(Sλ′) 6= ∅, then there is an isometry hλ,λ′ from

a face Tλ ⊂ Sλ onto a face Tλ′ ⊂ Sλ′ such that
pλ(x) = pλ′(x′) if and only if x′ = hλ,λ′(x).
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Intrinsic metric

K comes equipped with the quotient pseudometric, which coincide
with so-called intrinsic pseudo metric.

An m-string in K from x to y is a sequence
σ = (x0, . . . , xm) ⊂ K such that x = x0, y = xm and for each
i = 0, . . . ,m− 1, there is a simplex S(i) containing xi and xi+1.

Define the length of σ by

`(σ) =
m−1∑
i=0

dS(i)(xi, xi+1).
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Intrinsic metric

Definition

The intrinsic pseudometric on K is defined by

d(x, y) = inf {`(σ) : σ a string from x to y} .

Let x ∈ K. For a simplex S containing x, define

ε(x, S) = inf {dS(x, T ) : T a face of S and x /∈ T}

and

ε(x) = inf {ε(x, S) : S ⊂ K simplex containing x} .

If ε(x) > 0 for all x ∈ K, then d is a metric and (K, d) is a length
space.
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Abstract simplicial complex

Definition

An abstract simplicial complex consists of of a set V and a
collection S of (nonempty) finite subsets of V, such that

• {v} ∈ S for all v ∈ V,
• if S ∈ S, then any nonempty subset T of S belongs to S.

We call elements of V vertices and elements of S simplices.
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Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W
be a real vector space with basis W. The affine realization |S| of a
simplex S ⊂ K is the convex hull of S in W.

|S| inherits the Euclidean topology.

The affine realization of K is

|K| =
⋃
{|S| : S ⊂ K} .
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Metrizing affine realization

Alternative definition of piecewise Euclidean simplicial complex:

Definition

A piecewise Euclidean simplicial complex consists of:

• an abstract simplicial complex,

• a set Shapes(K) of simplices S′i ⊂ Eni

• for any simplex S in the affine realization of K, an affine
isomorphism fs : S′ → S, where S′ ∈ Shapes(K). If T is a
face of S, then f−1

S ◦ fS is required to be an isometry from T ′

onto a face of S.

Using piecewise linear path, we define the intrinsic pseudometric.
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Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean
simplicial complex X such that

1 X is a union of a collection A of subcomplexes E, called
apartments, such that dE makes (E, dE) isometric to En and
induces the given Euclidean metric on each simplex.

2 Any two simplices A,B are contained in an apartment.

3 Given two apartments E,E′ containing A and B, there exists
a simplicial isometry from (E, dE) onto (E′, dE′) which leaves
A and B fixed.

The n-simplices are called chambers.
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This is a building:
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This is not a building:
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Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete CAT(0)
space.

Let C be a chamber in an apartment E ⊂ X. Define a retraction
ρC,E : X → E by

ρC,E(x) = φE,E′(x)

where E′ is an apartment containing both x and C, and
φE,E′ : E′ → E is the unique isometry between E′ and E.

Then ρC,E : X → E is a nonexpansive simplicial retraction.
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Main theorem

Sketch of proof.

Given x, y ∈ X, choose an apartment E ⊂ X containing them and
let [x, y] be the line segment joining them in E. Choose
p = pt ∈ [x, y], where 0 ≤ t ≤ 1, choose C ⊂ E be a chamber
containing p, and let ρ = ρC,E . Take any z ∈ X.

We must verify:

d2(z, p) ≤ (1− t)d2(z, x) + td2(z, y)− t(1− t)d2(x, y).

But it follows from:

d2 (ρ(z), p) ≤ (1− t)d2 (ρ(z), x) + td2 (ρ(z), y)− t(1− t)d2(x, y).
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Final remarks

• M. Davis (1998) showed that all buildings are CAT(0).

• More general definition of buildings: a non-simplicial complex.

• Modern definition of buildings: W -metric spaces.
This approach does not use apartments.
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Modern definition of buildings

We start with a Coxeter system (W,S), where

• W is a (reflection) group

• S is a set of generators of W.

A building is a pair (C, δ) where C is a nonempty set (of chambers)
and a ‘distance’ function δ : C × C →W such that

1 δ(C,D) = 1 if and only if C = D.

2 If δ(C,D) = w, and C ′ ∈ C satisfies δ(C ′, C) = s ∈ S, then
δ(C ′, D) = sw or w. If, in addition, `(sw) = `(w) + 1, then
δ(C ′, D) = sw.

3 If δ(C,D) = w, then for any s ∈ S there is a chamber C ′ ∈ C
such that δ(C ′, C) = s and δ(C ′, D) = sw.
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Suggestions for our next talks

• Examples (hyperbolic spaces, Riemannian manifolds,. . . )

• Connections to Banach space geometry

• Topologies on CAT(0) spaces

• Alternating projections

• Fixed point theory

• Groups and CAT(0) spaces

• Applications (phylogenetic trees, robotics,. . . )
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Overview

• 1976: Lim defined ∆-convergence in metric spaces

• 2004: Sosov defined Φ-convergence in metric spaces

• 2008: Kirk and Panyanak used ∆-convergence in CAT(0), and
asked for topology

• 2009: Esṕınola and Fernández-León modified Φ-convergence
to get equivalent condition for ∆-convergence in CAT(0)

• 2009: (M.B.) definition of a topology that corresponds to the
above convergence
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Weak convergence

Let (X, d) be a metric space. Suppose (xν) ⊂ X is a bounded net
and define its asymptotic radius about a given point x ∈ X as

r(xν , x) = lim sup
ν

d(xν , x),

and the asymptotic radius as

r(xν) = inf
x∈X

r(xν , x).

Further, we say that a point x ∈ X is the asymptotic center of
(xν) if

r(xν , x) = r(xν).

Recall that the asymptotic center of (xν) exists and is unique, if X
is a complete CAT(0) space.
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r(xν) = inf
x∈X

r(xν , x).

Further, we say that a point x ∈ X is the asymptotic center of
(xν) if

r(xν , x) = r(xν).

Recall that the asymptotic center of (xν) exists and is unique, if X
is a complete CAT(0) space.
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Weak convergence

Definition (Lim)

We shall say that (xν) ⊂ X weakly converges to a point x ∈ X if
x is the asymptotic center of each subnet of (xν). We use the
notation xν

w→ x.

Clearly, if xν → x, then xν
w→ x.
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Proposition (Esṕınola, Fernández-León)

Let (X, d) be a complete CAT(0) space, (xn) ⊂ X be a bounded
sequence and x ∈ X. Then xn

w→ x if and only if, for any geodesic
γ through x we have d (x, Pγ(xn))→ 0.

γ

xn

Pγ(xn) x

n → ∞
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Weak topology

Definition (M.B. 2009)

Let X be a complete CAT(0) space. A set M ⊂ X is open if, for
any x0 ∈M, there are ε > 0 and a finite family of nontrivial
geodesics γ1, . . . , γN through x0 such that

Ux0(ε, γ1, . . . , γN ) = {x ∈ X : d (x0, Pγi(x)) < ε, i = 1, . . . , N}

is contained in M. Denote τ the collection of all open sets of X.

The sets Ux0(ε, γ1, . . . , γN ) are convex iff X has the property (N).
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Weak topology

Ux0(ε, γ1, γ2, γ3)

γ1

γ2

γ3

x

x0

Pγ1
(x)

Pγ2
(x)

Pγ3
(x)

ε

ε

ε
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Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

1 τ is a Hausdorff topology on X,

2 xν
τ→ x if and only if xν

w→ x, for (xν) ⊂ X a bounded net
and x ∈ X.

3 τ is weaker than the topology induced by the metric d,

4 τ is the σ(X,X∗)-topology when X is a Hilbert space.

5 τ is not metrizable in general.
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Properties of the weak topology

The weak topology in Banach spaces:

compactness = sequential compactness = countable compactness

But not in CAT(0) spaces!

Example

Consider a countable set {x1, x2, . . . , x∞}, and for every n ∈ N,
join x∞ with xn by a geodesic of length n. Then xn

w→ x∞, but is
unbounded. X is sequentially w-compact, but not (countably)
w−compact.

Let C be a convex set in a complete CAT(0) space. Then C = C
w
.
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Open problems

Let (X, d) be a complete CAT(0) space.

1 Let (xn) ⊂ X be a bounded sequence weakly converging to a
point x ∈ X. Is then the case that

{x} =
⋂
n∈N

co {xn, xn+1, . . . }?

Note: “⊂” is known. The converse is true if we assume the
property (N).

2 Suppose C ⊂ X is compact. Is coC compact?

3 Is the weak topology restricted on balls metrizable?
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