Introduction to CAT(0) spaces

Miroslav Bačák

CARMA, University of Newcastle

23 March 2010

Contents of the talk

- Geodesics and angles
- OCAT(0) spaces
- 3 Examples
- 4 Metric projections
- Open problems

Geodesics Length space Angles

Geodesics

Let (X,d) be a metric space. A geodesic joining $x\in X$ to $y\in X$ is a mapping $\gamma:[0,d(x,y)]\to X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x,y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a *(uniquely) geodesic metric space* if any two points are connected by a (unique) geodesic.

Geodesics Length space Angles

Geodesics

Let (X,d) be a metric space. A geodesic joining $x\in X$ to $y\in X$ is a mapping $\gamma:[0,d(x,y)]\to X$ such that

- $\gamma(0) = x$,
- $\gamma(d(x,y)) = y$,
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a *(uniquely) geodesic metric space* if any two points are connected by a (unique) geodesic.

Geodesics Length space Angles

Geodesics

Let (X,d) be a metric space. A geodesic joining $x\in X$ to $y\in X$ is a mapping $\gamma:[0,d(x,y)]\to X$ such that

- $\gamma(0) = x$,
- $\gamma\left(d(x,y)\right)=y,$
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a *(uniquely) geodesic metric space* if any two points are connected by a (unique) geodesic.

Geodesics Length space Angles

Geodesics

Let (X,d) be a metric space. A geodesic joining $x\in X$ to $y\in X$ is a mapping $\gamma:[0,d(x,y)]\to X$ such that

- $\gamma(0) = x$,
- $\gamma\left(d(x,y)\right)=y,$
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a *(uniquely) geodesic metric space* if any two points are connected by a (unique) geodesic.

Geodesics Length space Angles

Geodesics

Let (X,d) be a metric space. A geodesic joining $x\in X$ to $y\in X$ is a mapping $\gamma:[0,d(x,y)]\to X$ such that

- $\gamma(0) = x$,
- $\gamma\left(d(x,y)\right)=y,$
- $d(\gamma(t_1), \gamma(t_2)) = |t_1 t_2|$ for any $t_1, t_2 \in [0, d(x, y)]$.

X is a *(uniquely) geodesic metric space* if any two points are connected by a (unique) geodesic.

Geodesics Length space Angles

Comparison triangle

Let (X,d) be a geodesic metric space. A geodesic triangle consists of three point $p,q,r\in X$ and three geodesics [p,q],[q,r],[r,p]. Denote $\bigtriangleup\left([p,q],[q,r],[r,p]\right)$.

For such a triangle, there is a *comparison triangle* $\overline{\triangle}(\overline{p},\overline{q},\overline{r}) \subset \mathbb{R}^2$:

- $d(p,q) = d(\overline{p},\overline{q})$
- $d(q,r) = d(\overline{q},\overline{r})$
- $d(r,p) = d(\overline{r},\overline{p})$

Geodesics Length space Angles

Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists of three point $p, q, r \in X$ and three geodesics [p, q], [q, r], [r, p]. Denote $\triangle ([p, q], [q, r], [r, p])$.

For such a triangle, there is a *comparison triangle* $\overline{\bigtriangleup}(\overline{p},\overline{q},\overline{r}) \subset \mathbb{R}^2$:

- $d(p,q) = d(\overline{p},\overline{q})$
- $d(q,r) = d(\overline{q},\overline{r})$
- $d(r,p) = d(\overline{r},\overline{p})$

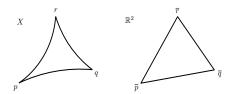
Geodesics Length space Angles

Comparison triangle

Let (X, d) be a geodesic metric space. A geodesic triangle consists of three point $p, q, r \in X$ and three geodesics [p, q], [q, r], [r, p]. Denote $\triangle ([p, q], [q, r], [r, p])$.

For such a triangle, there is a *comparison triangle* $\overline{\bigtriangleup}(\overline{p},\overline{q},\overline{r}) \subset \mathbb{R}^2$:

- $d(p,q) = d(\overline{p},\overline{q})$
- $d(q,r) = d(\overline{q},\overline{r})$
- $d(r,p) = d(\overline{r},\overline{p})$



Geodesics Length space Angles

Length space

Let (X, d) be a metric space. A *curve* is a continuous mapping from a compact interval to X.

The *length* of a curve $\gamma : [a, b] \rightarrow X$ is

$$\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d\left(\gamma(t_i), \gamma(t_{i+1})\right),$$

where \mathcal{P} stands for the set of partitions of [a, b].

Definition

(X,d) is a $\mathit{length\ space}$ if for any $x,y\in X$ we have

 $d(x,y) = \inf \left\{ \ell(\gamma) : \gamma \text{ joins } x, y \right\}.$

Geodesics Length space Angles

Length space

Let (X, d) be a metric space. A *curve* is a continuous mapping from a compact interval to X.

The length of a curve $\gamma:[a,b]\to X$ is

$$\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d\left(\gamma(t_i), \gamma(t_{i+1})\right),$$

where \mathcal{P} stands for the set of partitions of [a, b].

Definition (X,d) is a *length space* if for any $x, y \in X$ we have $d(x,y) = \inf \{\ell(\gamma) : \gamma \text{ joins } x, y\}.$

Geodesics Length space Angles

Length space

Let (X, d) be a metric space. A *curve* is a continuous mapping from a compact interval to X.

The length of a curve $\gamma:[a,b]\to X$ is

$$\ell(\gamma) = \sup_{\mathcal{P}} \sum_{i=1}^{n-1} d\left(\gamma(t_i), \gamma(t_{i+1})\right),$$

where \mathcal{P} stands for the set of partitions of [a, b].

Definition

(X,d) is a *length space* if for any $x, y \in X$ we have

$$d(x, y) = \inf \left\{ \ell(\gamma) : \gamma \text{ joins } x, y \right\}.$$

Open problems

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take lim in place of lim sup,
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $lpha(\cdot,\cdot,\cdot)$ is use on $X^3\ldots$

Open problems

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take \lim in place of $\limsup,$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $lpha(\cdot,\cdot,\cdot)$ is use on $X^3\ldots$

Open problems

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take \lim in place of $\limsup,$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $lpha(\cdot,\cdot,\cdot)$ is use on $X^3\ldots$

Open problems

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take \lim in place of $\limsup,$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $lpha(\cdot,\cdot,\cdot)$ is use on $X^3\ldots$

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take \lim in place of $\limsup,$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $\alpha(\cdot,\cdot,\cdot)$ is use on X^3

Geodesics Length space Angles

Angles

Definition

Let X be a geodesic space. We define the Alexandrov angle between two geodesics $\gamma_1: [0, t_1] \to X$ and $\gamma_2: [0, t_2] \to X$ with $\gamma_1(0) = \gamma_2(0)$ by

$$\alpha\left(\gamma_{1},\gamma_{2}\right)=\limsup_{t_{1},t_{2}\to0}\measuredangle\left(\gamma_{1}(t_{1}),\gamma_{1}(0),\gamma_{2}(t_{2})\right).$$

So, the angle is a number from $[0,\pi]$. In CAT(0) spaces:

- one can take \lim in place of $\limsup,$
- $\alpha(\gamma_1, \gamma_2) = \lim_{t \to 0} 2 \arcsin \frac{1}{2t} d(\gamma_1(t), \gamma_2(t)),$
- for a fixed $p \in X$ the function $\alpha(\cdot, p, \cdot)$ is continuous on X^2 ,
- the function $\alpha(\cdot,\cdot,\cdot)$ is use on $X^3.\ldots$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ◆○ ◆

Definition of CAT(0) Basic properties Equivalent conditions

Geodesics and angles

OCAT(0) spaces

3 Examples

O Metric projections

6 Open problems

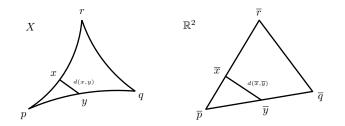
・ロト (日) (日) (日) (日) (日) (日)

Definition of CAT(0) Basic properties Equivalent conditions

Definition of CAT(0) space

Definition (CAT(0) space)

Let (X, d) be a geodesic space. It is a CAT(0) space if for any geodesic triangle $\triangle \subset X$ and $x, y \in \triangle$ we have $d(x, y) \leq d(\overline{x}, \overline{y})$, where $\overline{x}, \overline{y} \in \overline{\triangle}$.



Definition of CAT(0) Basic properties Equivalent conditions

Basic properties

Let X be a CAT(0) space. Then we have

- **()** For each $x, y \in X$ there is a unique geodesic connecting x, y.
- 2 Geodesics vary continuously with their end points.
- ${f 3}$ X is Ptolemaic, i.e. the Ptolemy inequality holds:

$d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$

(a) X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t)), t \in [a, b]$ is convex.

Definition of CAT(0) Basic properties Equivalent conditions

Basic properties

Let X be a CAT(0) space. Then we have

- **()** For each $x, y \in X$ there is a unique geodesic connecting x, y.
- **2** Geodesics vary continuously with their end points.
- ${f 3}$ X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$

() X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t)), t \in [a, b]$ is convex.

Definition of CAT(0) Basic properties Equivalent conditions

Basic properties

Let X be a CAT(0) space. Then we have

- **①** For each $x, y \in X$ there is a unique geodesic connecting x, y.
- **2** Geodesics vary continuously with their end points.
- ${f 3}$ X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$

() X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t)), t \in [a, b]$ is convex.

Definition of CAT(0) Basic properties Equivalent conditions

Basic properties

Let X be a CAT(0) space. Then we have

- **①** For each $x, y \in X$ there is a unique geodesic connecting x, y.
- **2** Geodesics vary continuously with their end points.
- ${f 3}$ X is Ptolemaic, i.e. the Ptolemy inequality holds:

 $d(x,y)d(u,v) \leq d(x,u)d(y,v) + d(x,v)d(y,u).$

④ X is Busemann convex, i.e. for geodesics $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t)), t \in [a, b]$ is convex.

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a complete metric space. Then X is a length space if and only if for any $x, y \in X$ and $\delta > 0$ there is $m \in X$ such that

$$\max\left\{d(x,m), d(y,m)\right\} \le \frac{1}{2}d(x,y) + \delta.$$

Proposition (Menger)

Let X be a complete metric space. Then X is geodesic if and only if for any $x, y \in X$ there exists $m \in X$ such that

$$d(x,m) = d(m,y) = \frac{1}{2}d(x,y).$$

비로 《로》《로》《티》《티》

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a complete metric space. Then X is a length space if and only if for any $x, y \in X$ and $\delta > 0$ there is $m \in X$ such that

$$\max\left\{d(x,m), d(y,m)\right\} \le \frac{1}{2}d(x,y) + \delta.$$

Proposition (Menger)

Let X be a complete metric space. Then X is geodesic if and only if for any $x, y \in X$ there exists $m \in X$ such that

$$d(x,m) = d(m,y) = \frac{1}{2}d(x,y).$$

비로 《로》《로》《티》《마

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a complete metric space. The following conditions are equivalent.

1 X is a CAT(0) space.

2 For any $a, b \in X$ and $\delta > 0$ there is $m \in X$ such that $\max \{d(a, m), d(b, m)\} \leq \frac{1}{2}d(a, b) + \delta$, and for any $x_1, x_2, y_1, y_2 \in X$ there exist $\bar{x_1}, \bar{x_2}, \bar{y_1}, \bar{y_2} \in \mathbb{R}^2$ such that $d(x_i, y_j) = d(\bar{x_i}, \bar{y_j})$ for $i, j \in \{1, 2\}$, and $d(x_1, x_2) \leq d(\bar{x_1}, \bar{x_2})$ and $d(y_1, y_2) \leq d(\bar{y_1}, \bar{y_2})$.

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a complete metric space. The following conditions are equivalent.

1 X is a CAT(0) space.

2 For any $a, b \in X$ and $\delta > 0$ there is $m \in X$ such that $\max \{d(a, m), d(b, m)\} \leq \frac{1}{2}d(a, b) + \delta$, and for any $x_1, x_2, y_1, y_2 \in X$ there exist $\bar{x_1}, \bar{x_2}, \bar{y_1}, \bar{y_2} \in \mathbb{R}^2$ such that $d(x_i, y_j) = d(\bar{x_i}, \bar{y_j})$ for $i, j \in \{1, 2\}$, and $d(x_1, x_2) \leq d(\bar{x_1}, \bar{x_2})$ and $d(y_1, y_2) \leq d(\bar{y_1}, \bar{y_2})$.

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a geodesic space. TFAE

- **1** X is a CAT(0) space.
- **2** For every triangle \triangle $([p,q],[q,r],[r,p]) \subset X$ and every $x \in [q,r]$, we have

 $d(x,p) \le d(\bar{x},\bar{p}).$

(B) For every triangle \triangle $([p,q], [q,r], [r,p]) \subset X$ and every $x \in [p,q], y \in [p,r]$ with $x \neq p$ and $y \neq p$, we have

 $\measuredangle(\bar{x},\bar{p},\bar{y}) \le \measuredangle(\bar{q},\bar{p},\bar{r}).$

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition

Let X be a geodesic space. TFAE

- **1** X is a CAT(0) space.
- **2** For every triangle \triangle $([p,q],[q,r],[r,p]) \subset X$ and every $x \in [q,r]$, we have

 $d(x,p) \le d(\bar{x},\bar{p}).$

3 For every triangle \triangle $([p,q], [q,r], [r,p]) \subset X$ and every $x \in [p,q], y \in [p,r]$ with $x \neq p$ and $y \neq p$, we have

 $\measuredangle(\bar{x},\bar{p},\bar{y}) \le \measuredangle(\bar{q},\bar{p},\bar{r}).$

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (...continued)

- The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- **G** For every triangle \triangle $([p,q], [q,r], [r,p]) \subset X$ with $p \neq q$ and $p \neq r$, if \triangle $([a,b], [b,c], [c,a]) \subset \mathbb{R}^2$ is a triangle with d(p,q) = d(a,b), d(p,r) = d(a,c) and $\measuredangle(b,a,c) = \alpha(q,p,r),$ then $d(q,r) \geq d(b,c)$
- **()** For any $x, y, z \in X$ and $m \in X$ with 2d(y,m) = 2d(m,z) = d(y,z) we have

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (...continued)

- The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- $\begin{aligned} \textbf{S} \text{ For every triangle } & \bigtriangleup([p,q],[q,r],[r,p]) \subset X \text{ with } p \neq q \text{ and } \\ p \neq r, \text{ if } \bigtriangleup([a,b],[b,c],[c,a]) \subset \mathbb{R}^2 \text{ is a triangle with } \\ & d(p,q) = d(a,b), d(p,r) = d(a,c) \text{ and } \measuredangle(b,a,c) = \alpha(q,p,r), \\ & \text{ then } d(q,r) \geq d(b,c) \end{aligned}$

() For any
$$x, y, z \in X$$
 and $m \in X$ with $2d(y,m) = 2d(m,z) = d(y,z)$ we have

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (...continued)

- The angle between the sides of any geodesic triangle in X with distinct vertices is no greater than the angle between the corresponding sides of its comparison triangle.
- $\label{eq:started} \begin{array}{l} \textbf{S} \mbox{ For every triangle } \bigtriangleup([p,q],[q,r],[r,p]) \subset X \mbox{ with } p \neq q \mbox{ and } p \neq r, \mbox{ if } \bigtriangleup([a,b],[b,c],[c,a]) \subset \mathbb{R}^2 \mbox{ is a triangle with } d(p,q) = d(a,b), d(p,r) = d(a,c) \mbox{ and } \measuredangle(b,a,c) = \alpha(q,p,r), \mbox{ then } d(q,r) \geq d(b,c) \end{array}$
- **(b)** For any $x, y, z \in X$ and $m \in X$ with 2d(y,m) = 2d(m,z) = d(y,z) we have

$$d(x,y)^{2} + d(x,z)^{2} \ge 2d(x,m)^{2} + \frac{1}{2}d(y,z)^{2}.$$

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$d(x,y)d(u,v) \leq d(x,u)d(y,v) + d(x,v)d(y,u).$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and Busemann convex.

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and Busemann convex.

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$d(x,u)^2 + d(y,v)^2 \leq d(x,y)^2 + d(y,u)^2 + d(u,v)^2 + d(v,x)^2$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y, \sigma^{1/2})$ where (Y, σ) is an arbitrary metric space.

비로 《로》《로》《티》《티》

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$d(x,u)^2 + d(y,v)^2 \le d(x,y)^2 + d(y,u)^2 + d(u,v)^2 + d(v,x)^2$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y, \sigma^{1/2})$ where (Y, σ) is an arbitrary metric space.

비로 시로가 시로가 시험가 시비가

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$d(x,u)^2 + d(y,v)^2 \le d(x,y)^2 + d(y,u)^2 + d(u,v)^2 + d(v,x)^2$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y, \sigma^{1/2})$ where (Y, σ) is an arbitrary metric space.

비로 《로》《로》《티》《曰》

Definition of CAT(0) Basic properties Equivalent conditions

Equivalent conditions

Proposition (Berg, Nikolaev, (pf: Sato))

A geodesic space X is CAT(0) if and only if for any $x, y, u, v \in X$ we have

$$d(x,u)^2 + d(y,v)^2 \le d(x,y)^2 + d(y,u)^2 + d(u,v)^2 + d(v,x)^2$$

Remark

- Answers a question of Gromov
- Roundness 2 (Enfo)
- The inequality holds for instance for the metric space $(Y, \sigma^{1/2})$ where (Y, σ) is an arbitrary metric space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□>

Geodesics and angles

OCAT(0) spaces

3 Examples

4 Metric projections

6 Open problems

・ロト (日) (日) (日) (日) (日) (日)

Examples

• Hilbert spaces – the only Banach spaces which are CAT(0)

2 \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if

- for $x, y \in T$ there is a unique geodesic [x, y]
- if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$
- ${f 8}$ Classical hyperbolic spaces ${\mathbb H}^n$
- Ocomplete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, . . .

Examples

- Hilbert spaces the only Banach spaces which are CAT(0)
- **2** \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if
 - for $x, y \in T$ there is a unique geodesic [x, y]
 - if $[x, y] \cap [y, z] = \{y\}$, then $[x, z] = [x, y] \cup [y, z]$
- ${f 3}$ Classical hyperbolic spaces \mathbb{H}^n
- Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- **6** Euclidean buildings, . . .

Examples

• Hilbert spaces – the only Banach spaces which are CAT(0)

2 \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if

- for $x, y \in T$ there is a unique geodesic [x, y]
- if $[x,y] \cap [y,z] = \{y\}$, then $[x,z] = [x,y] \cup [y,z]$

3 Classical hyperbolic spaces \mathbb{H}^n

- Ocomplete simply connected Riemannian manifolds with nonpositive sectional curvature
- **5** Euclidean buildings, . . .

Examples

Hilbert spaces – the only Banach spaces which are CAT(0)

2 \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if

- for $x, y \in T$ there is a unique geodesic [x, y]
- if $[x,y] \cap [y,z] = \{y\}$, then $[x,z] = [x,y] \cup [y,z]$
- **3** Classical hyperbolic spaces \mathbb{H}^n
- Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- 5 Euclidean buildings, . . .

Examples

Hilbert spaces – the only Banach spaces which are CAT(0)

2 \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if

- for $x, y \in T$ there is a unique geodesic [x, y]
- if $[x,y]\cap [y,z]=\{y\},$ then $[x,z]=[x,y]\cup [y,z]$
- **3** Classical hyperbolic spaces \mathbb{H}^n
- Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- 6 Euclidean buildings, ...

Examples

Hilbert spaces – the only Banach spaces which are CAT(0)

2 \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if

- for $x, y \in T$ there is a unique geodesic [x, y]
- if $[x,y]\cap [y,z]=\{y\},$ then $[x,z]=[x,y]\cup [y,z]$
- **3** Classical hyperbolic spaces \mathbb{H}^n
- Complete simply connected Riemannian manifolds with nonpositive sectional curvature
- G Euclidean buildings, ...

- Geodesics and angles
- OCAT(0) spaces
- B Examples
- 4 Metric projections
- **6** Open problems

・ロト (日) (日) (日) (日) (日) (日)

Projections

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is *convex* if, given $x, y \in M$, we have $[x, y] \subset M$.

Let (X, d) be a complete CAT(0) space and $C \subset X$ be a convex closed set. Define the *distance function* by

$$d(x,C) = \inf_{c \in C} d(x,c), \quad x \in X.$$

Projections

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is *convex* if, given $x, y \in M$, we have $[x, y] \subset M$.

Let (X, d) be a complete CAT(0) space and $C \subset X$ be a convex closed set. Define the *distance function* by

$$d(x,C) = \inf_{c \in C} d(x,c), \quad x \in X.$$

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- 2 For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- old s For any $x\in X\setminus C$ and $y\in C\setminus\{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

4 P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **Q** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

4 P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Projections

Proposition

Let $C \subset X$ be closed and convex. Then

- for every $x \in X$, there exists a unique point $P_C(x) \in C$ such that $d(x, P_C(x)) = d(x, C)$.
- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

4 P_C is a nonexpansive retraction onto C.

The mapping $P_C: X \to X$ is called a *projection* onto C.

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Property (N) A non-empty intersection

Geodesics and angles

- 2 CAT(0) spaces
- B Examples
- O Metric projections
- Open problems

・ロト (日) (日) (日) (日) (日) (日)

Property (N) A non-empty intersection

Nice projections on geodesics

Definition

We shall say that X has the property (N) if, given a geodesic γ and $x, y \in X$, we have that $P_{\gamma}(m)$ lies on the geodesic from $P_{\gamma}(x)$ to $P_{\gamma}(y)$, for any $m \in [x, y]$.

Do all complete CAT(0) spaces have the property (N)?

Property (N) A non-empty intersection

A non-empty intersection

... on the blackboard

Miroslav Bačák Introduction to CAT(0) spaces

・ロト (日) (日) (日) (日) (日) (日)

Suggestions for our next talks

- Examples (hyperbolic spaces, manifolds, buildings,...)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Applications (phylogenetic trees)

同ト 4 ヨト 4 ヨト ヨヨ 900

Metric projections onto convex sets

Miroslav Bačák

CARMA, University of Newcastle

30 March 2010

Contents of the talk

Warm-up

Cosine rule Inversion in metric spaces

Ø Metric projections

Definitions Main theorem(s) Weak convergence

3 Final remarks

▲ 글 ▶ ▲ 글 ▶ _ 글]

= 200

Cosine rule Inversion in metric spaces

Cosine rule

Recall:

Proposition

Let X be a geodesic space. TFAE

$$\bullet X \text{ is } CAT(0).$$

$$\textbf{2 For every triangle } \bigtriangleup([p,q],[q,r],[r,p]) \subset X \text{ with } p \neq q \text{ and } p \neq r, \text{ if } \bigtriangleup([a,b],[b,c],[c,a]) \subset \mathbb{R}^2 \text{ is a triangle with } d(p,q) = d(a,b), d(p,r) = d(a,c) \text{ and } \measuredangle(b,a,c) = \alpha(q,p,r), \text{ then } d(q,r) \geq d(b,c).$$

Equivalently:

$$w^2 \ge u^2 + v^2 - 2uv\cos\gamma.$$

Cosine rule Inversion in metric spaces

Cosine rule

Recall:

Proposition

Let X be a geodesic space. TFAE

$$\bullet X \text{ is } CAT(0).$$

$$\textbf{2 For every triangle } \bigtriangleup([p,q],[q,r],[r,p]) \subset X \text{ with } p \neq q \text{ and } p \neq r, \text{ if } \bigtriangleup([a,b],[b,c],[c,a]) \subset \mathbb{R}^2 \text{ is a triangle with } d(p,q) = d(a,b), d(p,r) = d(a,c) \text{ and } \measuredangle(b,a,c) = \alpha(q,p,r), \text{ then } d(q,r) \geq d(b,c).$$

Equivalently:

$$w^2 \ge u^2 + v^2 - 2uv\cos\gamma.$$

Cosine rule Inversion in metric spaces

Ptolemy inequality

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t)), t \in [a, b]$ is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and Busemann convex.

Cosine rule Inversion in metric spaces

Ptolemy inequality

A metric space is Ptolemaic if the Ptolemy inequality holds:

$$d(x,y)d(u,v) \le d(x,u)d(y,v) + d(x,v)d(y,u).$$

A geodesic space is Busemann convex if for any $\gamma_1, \gamma_2 : [a, b] \to X$ the function $t \mapsto d(\gamma_1(t), \gamma_2(t))$, $t \in [a, b]$ is convex.

Proposition

A geodesic space X is CAT(0) if and only if it is Ptolemaic and Busemann convex.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x,y \in X \setminus \{p\}.$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_p is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping ++++ farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x,y \in X \setminus \{p\}.$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_p is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping ++++ farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x,y \in X \setminus \{p\}.$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_p is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping <---> farthest point mapping.

Inversion about sphere

Let (X, d) be a metric space. Fix $p \in X$. Define

$$i_p(x,y) = \frac{d(x,y)}{d(x,p)d(p,y)} \qquad x,y \in X \setminus \{p\}.$$

It is not a metric in general.

Proposition

Let X be Ptolemaic, then i_p is a metric on $X \setminus \{p\}$.

Inversion: nearest point mapping <>>> farthest point mapping.

Warm-up Definitions Metric projections Main theorem(s) Final remarks Weak convergence

Warm-up

Cosine rule Inversion in metric spaces

Metric projections
 Definitions
 Main theorem(s)
 Weak convergence

3 Final remarks

< 🗇 🕨

< 注) < 注) - (三) - ((-))

三日 のへの

Definitions Main theorem(s) Weak convergence

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the *distance function* as

$$d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.$$

Definition

For any $x \in X$ denote its *projection* onto C by

$$P_C(x) = \{c \in C : d(x, c) = d_C(x)\}.$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebyšev.

Definitions Main theorem(s) Weak convergence

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the *distance function* as

$$d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.$$

Definition

For any $x \in X$ denote its *projection* onto C by

$$P_C(x) = \{c \in C : d(x,c) = d_C(x)\}.$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebyšev.

Definitions Main theorem(s) Weak convergence

Projections

Definition

Let (X, d) be a metric space and $C \subset X$. Define the *distance* function as

$$d_C(x) = \inf_{c \in C} d(x, c), \quad x \in X.$$

Definition

For any $x \in X$ denote its *projection* onto C by

$$P_C(x) = \{c \in C : d(x, c) = d_C(x)\}.$$

If the set $P_C(x)$ is a singleton, for every $x \in X$, we say C is Čebyšev.

Definitions Main theorem(s) Weak convergence

Projections

Recall:

Definition

Let X be a uniquely geodesic space. A set $M \subset X$ is *convex* if, given $x, y \in M$, we have $[x, y] \subset M$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definitions Main theorem(s) Weak convergence

Projections

Theorem

Let X be CAT(0) and $C \subset X$ be complete convex. Then: **1** C is Čebyšev.

- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **3** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

• P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \to X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

イロト イポト イヨト イヨト

Definitions Main theorem(s) Weak convergence

Projections

Theorem

- Let X be CAT(0) and $C \subset X$ be complete convex. Then: **1** C is Čebyšev.
 - **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
 - **3** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

• P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \to X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

(日) (周) (日) (日) (日)

= 200

Definitions Main theorem(s) Weak convergence

Projections

Theorem

Let X be CAT(0) and $C \subset X$ be complete convex. Then: () C is Čebyšev.

- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

• P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \to X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

イロト イポト イヨト イヨト

= 200

Definitions Main theorem(s) Weak convergence

Projections

Theorem

Let X be CAT(0) and $C \subset X$ be complete convex. Then: **1** C is Čebyšev.

- **2** For any $y \in [x, P_C(x)]$ we have $P_C(y) = P_C(x)$.
- **③** For any $x \in X \setminus C$ and $y \in C \setminus \{P_C(x)\}$ we have

$$\alpha\left(x, P_C(x), y\right) \ge \frac{\pi}{2}.$$

• P_C is a nonexpansive retraction onto C. The map $H: X \times [0,1] \to X$ sending (x,t) to the point a distance $td(x, P_C(x))$ from x on $[x, P_C(x)]$ is a continuous homotopy from Id to P_C .

Definitions Main theorem(s) Weak convergence

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

\bullet d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \le d(x, y)$.

Proof.

1 By convexity of d.

2 $d_C(x) \le d(x, P_C(y)) \le d(x, y) + d(y, P_C(y)) = d(x, y) + d_C(y).$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Definitions Main theorem(s) Weak convergence

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

1 d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \le d(x, y)$.

Proof.

1 By convexity of d.

2 $d_C(x) \le d(x, P_C(y)) \le d(x, y) + d(y, P_C(y)) = d(x, y) + d_C(y).$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Definitions Main theorem(s) Weak convergence

Convexity of d_C

Proposition

Let X be a CAT(0) space and $C \subset X$ convex complete. Then:

1 d_C is convex.

2 For all x, y we have $|d_C(x) - d_C(y)| \le d(x, y)$.

Proof.

I By convexity of d.

2
$$d_C(x) \le d(x, P_C(y)) \le d(x, y) + d(y, P_C(y)) = d(x, y) + d_C(y).$$

= 200

Proposition

Let X be a CAT(0) space and $C \subset X$ a Čebyšev set. If P_C is nonexpansive, then C is convex.

Proof.

By contradiction, suppose there are $x, y \in C$ such that the point $m \in [x, y]$ with d(x, m) = d(m, y) is not in C. If both $d(x, P_C(m))$ and $d(y, P_C(m))$ were less than or equal to d(x, m), we would have another geodesic from x to y distinct from [x, y], namely $[x, P_C(m)] \cup [P_C(m), y]$. Without loss of generality, let $d(x, P_C(m)) > d(x, m)$. But this yields a contradiction, since $P_C(x) = x$ and P_C is nonexpansive.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),$$

and the asymptotic radius as

$$r(x_n) = \inf_{x \in X} r(x_n, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_n) if

$$r(x_n, x) = r(x_n).$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),$$

and the *asymptotic radius* as

$$r(x_n) = \inf_{x \in X} r(x_n, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_n) if

$$r(x_n, x) = r(x_n).$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),$$

and the *asymptotic radius* as

$$r(x_n) = \inf_{x \in X} r(x_n, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_n) if

$$r(x_n, x) = r(x_n).$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

Weak convergence

Suppose $(x_n) \subset X$ is a bounded sequence and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_n, x) = \limsup_{n \to \infty} d(x_n, x),$$

and the *asymptotic radius* as

$$r(x_n) = \inf_{x \in X} r(x_n, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_n) if

$$r(x_n, x) = r(x_n).$$

Recall that the asymptotic center of (x_n) exists and is unique, if X is a complete CAT(0) space.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Definitions Main theorem(s) Weak convergence

Weak convergence

Definition

We shall say that $(x_n) \subset X$ weakly converges to a point $x \in X$ if x is the asymptotic center of each subsequence of (x_n) . We use the notation $x_n \xrightarrow{w} x$.

Clearly, if $x_n \to x$, then $x_n \stackrel{w}{\to} x$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \xrightarrow{w} x$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \xrightarrow{w} x \in X$, then $x \in C$.

_emma

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n \stackrel{w}{\to} x$,

 $d_C(x) \le \liminf_{n \to \infty} d_C(x_n)$

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \xrightarrow{w} x$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \xrightarrow{w} x \in X$, then $x \in C$.

_emma

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n \stackrel{w}{\to} x$,

 $d_C(x) \le \liminf_{n \to \infty} d_C(x_n)$

イロト イヨト イヨト イヨト ヨ

Lemma

Let X be a CAT(0) space and $(x_n) \subset X$ a bounded sequence. Then there is a subsequence (x_{n_k}) of (x_n) and a point $x \in X$ such that $x_n \xrightarrow{w} x$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. If $(x_n) \subset C$ and $x_n \xrightarrow{w} x \in X$, then $x \in C$.

Lemma

Let X be a CAT(0) space and $C \subset X$ closed convex. The distance function d_C is weakly (sequentially) lsc, i.e., for any $x_n \stackrel{w}{\to} x$,

 $d_C(x) \le \liminf_{n \to \infty} d_C(x_n)$

(비로 ((로)) (로)) (집) (미)

Definitions Main theorem(s) Weak convergence

An alternative proof

Theorem (Projection theorem revisited)

Let X be a CAT(0) space and $C \subset X$ complete convex. Then, for any $x \in X$, there exists a point $c \in C$ such that $d_C(x) = d(c, x)$.

Proof.

Let $x \in X$. There exists $(c_n) \subset C$ such that $d(c_n, x) \to d_C(x)$. It is bounded, so a subsequence (c_{n_k}) weakly converges to some $c \in X$. Since C is convex, $c \in C$. Now,

 $d_C(x) \le d(x,c) \le \liminf_{n \to \infty} d(x_n,c) = d_C(x).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definitions Main theorem(s) Weak convergence

An alternative proof

Theorem (Projection theorem revisited)

Let X be a CAT(0) space and $C \subset X$ complete convex. Then, for any $x \in X$, there exists a point $c \in C$ such that $d_C(x) = d(c, x)$.

Proof.

Let $x \in X$. There exists $(c_n) \subset C$ such that $d(c_n, x) \to d_C(x)$. It is bounded, so a subsequence (c_{n_k}) weakly converges to some $c \in X$. Since C is convex, $c \in C$. Now,

$$d_C(x) \le d(x,c) \le \liminf_{n \to \infty} d(x_n,c) = d_C(x).$$

《曰》 《部》 《문》 《문》 [1]

Final remarks

- Projections are nonexpansive even in CAT(1) spaces.
- Our assumptions: X a CAT(0) space and C ⊂ X complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

Final remarks

- Projections are nonexpansive even in CAT(1) spaces.
- Our assumptions: X a CAT(0) space and C ⊂ X complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

Final remarks

- Projections are nonexpansive even in CAT(1) spaces.
- Our assumptions: X a CAT(0) space and C ⊂ X complete convex.
- Still things to do: e.g., are weakly closed Čebyšev sets convex?

Suggestions for our next talks

- Examples (hyperbolic spaces, manifolds, buildings,...)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Applications (phylogenetic trees, robotics)

Euclidean buildings

Miroslav Bačák

CARMA, University of Newcastle

13 April 2010

三日 のへの

Contents of the talk

Simplicial complexes Gluing definition Examples Metrizing definition

2 Euclidean buildings

Definition Examples Euclidean buildings are CAT(0)

8 Final remarks

三日 のへの

向下 イヨト イヨト

Gluing definition Examples Metrizing definition

Piecewise Euclidean simplicial complex

Definition

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a family of simplices $S_{\lambda} \subset \mathbb{R}^{n_{\lambda}}$. Let $X = \bigcup_{\lambda \in \Lambda} (S_{\lambda} \times \{\lambda\})$. Let \sim be an equivalence relation and $K = X / \sim$. Let $p : X \to K$ be the projection and define $p_{\lambda} : S_{\lambda} \to K$ by $p_{\lambda} = p(\cdot, \lambda)$. Then K is a piecewise Euclidean simplicial complex if

1 the map p_{λ} is injective for every $\lambda \in \Lambda$,

2 if $p_{\lambda}(S_{\lambda}) \cap p_{\lambda'}(S_{\lambda'}) \neq \emptyset$, then there is an isometry $h_{\lambda,\lambda'}$ from a face $T_{\lambda} \subset S_{\lambda}$ onto a face $T_{\lambda'} \subset S_{\lambda'}$ such that $p_{\lambda}(x) = p_{\lambda'}(x')$ if and only if $x' = h_{\lambda,\lambda'}(x)$.

Gluing definition Examples Metrizing definition

Piecewise Euclidean simplicial complex

Definition

Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a family of simplices $S_{\lambda} \subset \mathbb{R}^{n_{\lambda}}$. Let $X = \bigcup_{\lambda \in \Lambda} (S_{\lambda} \times \{\lambda\})$. Let \sim be an equivalence relation and $K = X / \sim$. Let $p : X \to K$ be the projection and define $p_{\lambda} : S_{\lambda} \to K$ by $p_{\lambda} = p(\cdot, \lambda)$. Then K is a piecewise Euclidean simplicial complex if

1 the map p_{λ} is injective for every $\lambda \in \Lambda$,

2 if $p_{\lambda}(S_{\lambda}) \cap p_{\lambda'}(S_{\lambda'}) \neq \emptyset$, then there is an isometry $h_{\lambda,\lambda'}$ from a face $T_{\lambda} \subset S_{\lambda}$ onto a face $T_{\lambda'} \subset S_{\lambda'}$ such that $p_{\lambda}(x) = p_{\lambda'}(x')$ if and only if $x' = h_{\lambda,\lambda'}(x)$.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Gluing definition Examples Metrizing definition

Intrinsic metric

 ${\cal K}$ comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in *K* from *x* to *y* is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m - 1$, there is a simplex S(i) containing x_i and x_{i+1} .

Define the length of σ by

$$\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).$$

Gluing definition Examples Metrizing definition

Intrinsic metric

 ${\cal K}$ comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in K from x to y is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m-1$, there is a simplex S(i) containing x_i and x_{i+1} .

Define the length of σ by

$$\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).$$

Gluing definition Examples Metrizing definition

Intrinsic metric

 ${\cal K}$ comes equipped with the quotient pseudometric, which coincide with so-called intrinsic pseudo metric.

An *m*-string in *K* from *x* to *y* is a sequence $\sigma = (x_0, \ldots, x_m) \subset K$ such that $x = x_0, y = x_m$ and for each $i = 0, \ldots, m-1$, there is a simplex S(i) containing x_i and x_{i+1} .

Define the length of σ by

$$\ell(\sigma) = \sum_{i=0}^{m-1} d_{S(i)}(x_i, x_{i+1}).$$

Gluing definition Examples Metrizing definition

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

 $d(x,y) = \inf \left\{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \right\}.$

Let $x \in K$. For a simplex S containing x, define

$$\varepsilon(x,S) = \inf \{ d_S(x,T) : T \text{ a face of } S \text{ and } x \notin T \}$$

and

 $arepsilon(x) = \inf \left\{ arepsilon(x,S) : S \subset K \text{ simplex containing } x
ight\}.$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space.

Gluing definition Examples Metrizing definition

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

$$d(x,y) = \inf \left\{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \right\}.$$

Let $x \in K$. For a simplex S containing x, define

$$\varepsilon(x,S) = \inf \{ d_S(x,T) : T \text{ a face of } S \text{ and } x \notin T \}$$

and

 $\varepsilon(x) = \inf \left\{ \varepsilon(x,S) : S \subset K \text{ simplex containing } x \right\}.$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space.

Gluing definition Examples Metrizing definition

Intrinsic metric

Definition

The *intrinsic pseudometric* on K is defined by

$$d(x,y) = \inf \left\{ \ell(\sigma) : \sigma \text{ a string from } x \text{ to } y \right\}.$$

Let $x \in K$. For a simplex S containing x, define

$$\varepsilon(x,S) = \inf \left\{ d_S(x,T) : T \text{ a face of } S \text{ and } x \notin T \right\}$$

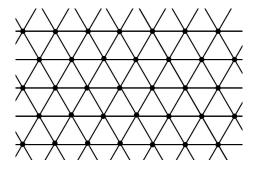
and

$$\varepsilon(x) = \inf \left\{ \varepsilon(x, S) : S \subset K \text{ simplex containing } x \right\}.$$

If $\varepsilon(x) > 0$ for all $x \in K$, then d is a metric and (K, d) is a length space.

Gluing definition Examples Metrizing definition

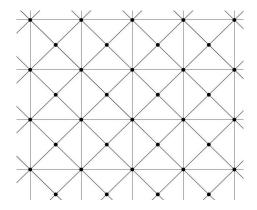
Examples of simplicial complexes



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gluing definition Examples Metrizing definition

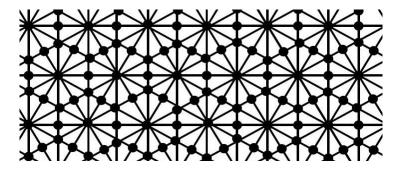
Examples of simplicial complexes



シック 正則 ヘヨト ヘヨト ヘロト

Gluing definition Examples Metrizing definition

Examples of simplicial complexes



・ロト (日) (日) (日) (日) (日) (日)

Gluing definition Examples Metrizing definition

Abstract simplicial complex

Definition

An abstract simplicial complex consists of of a set V and a collection S of (nonempty) finite subsets of V, such that

- $\{v\} \in \mathcal{S}$ for all $v \in V$,
- if $S \in \mathcal{S}$, then any nonempty subset T of S belongs to \mathcal{S} .

We call elements of V vertices and elements of S simplices.

(4回) (日) (日) (日) (000)

Gluing definition Examples Metrizing definition

Abstract simplicial complex

Definition

An abstract simplicial complex consists of of a set V and a collection S of (nonempty) finite subsets of V, such that

- $\{v\} \in \mathcal{S}$ for all $v \in V$,
- if $S \in \mathcal{S}$, then any nonempty subset T of S belongs to \mathcal{S} .

We call elements of V vertices and elements of ${\mathcal S}$ simplices.

(4回) (日) (日) (日) (000)

Gluing definition Examples Metrizing definition

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* |S| of a simplex $S \subset K$ is the convex hull of S in W.

|S| inherits the Euclidean topology.

The affine realization of \boldsymbol{K} is

 $|K| = \bigcup \{ |S| : S \subset K \}.$

→ □ → → □ → □ □ → へへへ

Gluing definition Examples Metrizing definition

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* |S| of a simplex $S \subset K$ is the convex hull of S in W.

 $\left|S\right|$ inherits the Euclidean topology.

The affine realization of K is

 $|K| = \bigcup \{ |S| : S \subset K \}.$

▲圖▶ ▲ 문▶ ▲ 문▶ 문| = · · ○ ○ ○

Gluing definition Examples Metrizing definition

Affine realization

Let K be an abstract simplicial complex with vertex set V. Let W be a real vector space with basis W. The *affine realization* |S| of a simplex $S \subset K$ is the convex hull of S in W.

|S| inherits the Euclidean topology.

The affine realization of K is

 $|K| = \bigcup \left\{ |S| : S \subset K \right\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gluing definition Examples Metrizing definition

Metrizing affine realization

Alternative definition of piecewise Euclidean simplicial complex:

Definition

A piecewise Euclidean simplicial complex consists of:

- an abstract simplicial complex,
- a set $\mathrm{Shapes}(K)$ of simplices $S'_i \subset \mathbb{E}^{n_i}$
- for any simplex S in the affine realization of K, an affine isomorphism $f_s: S' \to S$, where $S' \in \text{Shapes}(K)$. If T is a face of S, then $f_S^{-1} \circ f_S$ is required to be an isometry from T' onto a face of S.

Using piecewise linear path, we define the intrinsic pseudometric.

- 《圖》 《문》 《문》 문

= 200

Gluing definition Examples Metrizing definition

Metrizing affine realization

Alternative definition of piecewise Euclidean simplicial complex:

Definition

A piecewise Euclidean simplicial complex consists of:

- an abstract simplicial complex,
- a set $\operatorname{Shapes}(K)$ of simplices $S'_i \subset \mathbb{E}^{n_i}$
- for any simplex S in the affine realization of K, an affine isomorphism $f_s: S' \to S$, where $S' \in \text{Shapes}(K)$. If T is a face of S, then $f_S^{-1} \circ f_S$ is required to be an isometry from T' onto a face of S.

Using piecewise linear path, we define the intrinsic pseudometric.

Simplicial complexes Gluing definition Examples Metrizing definitior

2 Euclidean buildings

Definition Examples Euclidean buildings are CAT(0)

3 Final remarks

< □ > < □ > < □ > .

三日 のへの

Definition Examples Euclidean buildings are CAT(0)

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- X is a union of a collection \mathcal{A} of subcomplexes E, called *apartments*, such that d_E makes (E, d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- **2** Any two simplices A, B are contained in an apartment.
- **B** Given two apartments E, E' containing A and B, there exists a simplicial isometry from (E, d_E) onto $(E', d_{E'})$ which leaves A and B fixed.

Definition Examples Euclidean buildings are CAT(0)

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- X is a union of a collection \mathcal{A} of subcomplexes E, called *apartments*, such that d_E makes (E, d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- **2** Any two simplices A, B are contained in an apartment.
- **B** Given two apartments E, E' containing A and B, there exists a simplicial isometry from (E, d_E) onto $(E', d_{E'})$ which leaves A and B fixed.

Definition Examples Euclidean buildings are CAT(0)

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

- X is a union of a collection \mathcal{A} of subcomplexes E, called *apartments*, such that d_E makes (E, d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- **2** Any two simplices A, B are contained in an apartment.
- **③** Given two apartments E, E' containing A and B, there exists a simplicial isometry from (E, d_E) onto $(E', d_{E'})$ which leaves A and B fixed.

Definition Examples Euclidean buildings are CAT(0)

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

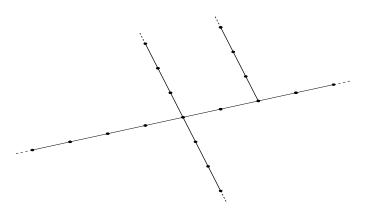
Euclidean building

Definition

A Euclidean building of dimension n is piecewise Euclidean simplicial complex X such that

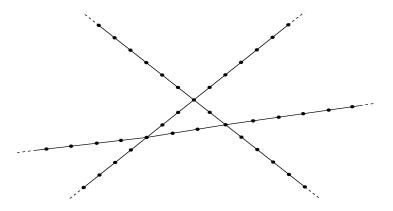
- X is a union of a collection \mathcal{A} of subcomplexes E, called *apartments*, such that d_E makes (E, d_E) isometric to \mathbb{E}^n and induces the given Euclidean metric on each simplex.
- **2** Any two simplices A, B are contained in an apartment.
- **③** Given two apartments E, E' containing A and B, there exists a simplicial isometry from (E, d_E) onto $(E', d_{E'})$ which leaves A and B fixed.

This is a building:



・ロト < 団ト < ヨト < ヨト < ロト

This is not a building:



・ロト < 団ト < ヨト < ヨト < ロト

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete CAT(0) space.

Let C be a chamber in an apartment $E \subset X.$ Define a retraction $\rho_{C,E}: X \to E$ by

 $\rho_{C,E}(x) = \phi_{E,E'}(x)$

where E' is an apartment containing both x and C, and $\phi_{E,E'}: E' \to E$ is the unique isometry between E' and E.

Then $\rho_{C,E}: X \to E$ is a nonexpansive simplicial retraction.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete CAT(0) space.

Let C be a chamber in an apartment $E \subset X.$ Define a retraction $\rho_{C,E}: X \to E$ by

$$\phi_{C,E}(x) = \phi_{E,E'}(x)$$

where E' is an apartment containing both x and C, and $\phi_{E,E'}: E' \to E$ is the unique isometry between E' and E.

1

Then $\rho_{C,E}: X \to E$ is a nonexpansive simplicial retraction.

・ロト (周) (E) (E) (E) (E)

Main theorem

Theorem

Let X be a Euclidean building. Then X is a complete CAT(0) space.

Let C be a chamber in an apartment $E \subset X.$ Define a retraction $\rho_{C,E}: X \to E$ by

$$\rho_{C,E}(x) = \phi_{E,E'}(x)$$

where E' is an apartment containing both x and C, and $\phi_{E,E'}: E' \to E$ is the unique isometry between E' and E.

1

Then $\rho_{C,E}: X \to E$ is a nonexpansive simplicial retraction.

・ロト (周) (E) (E) (E) (E)

Simplicial complexes Definition Euclidean buildings Examples Final remarks Euclidean buildings are CAT(0)

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let [x, y] be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$d^{2}(z,p) \leq (1-t)d^{2}(z,x) + td^{2}(z,y) - t(1-t)d^{2}(x,y).$$

But it follows from:

 $d^{2}\left(\rho(z),p\right) \leq (1-t)d^{2}\left(\rho(z),x\right) + td^{2}\left(\rho(z),y\right) - t(1-t)d^{2}(x,y).$

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let [x, y] be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$d^2(z,p) \leq (1-t)d^2(z,x) + td^2(z,y) - t(1-t)d^2(x,y).$$

But it follows from:

 $d^{2}\left(\rho(z),p\right) \leq (1-t)d^{2}\left(\rho(z),x\right) + td^{2}\left(\rho(z),y\right) - t(1-t)d^{2}(x,y).$

Main theorem

Sketch of proof.

Given $x, y \in X$, choose an apartment $E \subset X$ containing them and let [x, y] be the line segment joining them in E. Choose $p = p_t \in [x, y]$, where $0 \le t \le 1$, choose $C \subset E$ be a chamber containing p, and let $\rho = \rho_{C,E}$. Take any $z \in X$.

We must verify:

$$d^2(z,p) \leq (1-t)d^2(z,x) + td^2(z,y) - t(1-t)d^2(x,y).$$

But it follows from:

$$d^2\left(\rho(z),p\right) \leq (1-t)d^2\left(\rho(z),x\right) + td^2\left(\rho(z),y\right) - t(1-t)d^2(x,y).$$

Simplicial complexes Gluing definition Evenueles

- Examples
- Metrizing definition

2 Euclidean buildings

Definition Examples Euclidean buildings are CAT(0)

3 Final remarks

回下 くヨト くヨト

三日 のへの

Final remarks

- M. Davis (1998) showed that all buildings are CAT(0).
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: *W*-metric spaces. This approach does not use apartments.

・ 同下 ・ ヨト ・ ヨト

= 200

Final remarks

- M. Davis (1998) showed that all buildings are CAT(0).
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: *W*-metric spaces. This approach does not use apartments.

▲□> ▲ E > ▲ E > E = のQO

Final remarks

- M. Davis (1998) showed that all buildings are CAT(0).
- More general definition of buildings: a **non**-simplicial complex.

• Modern definition of buildings: *W*-metric spaces. This approach does not use apartments.

(4 回 ト 4 ヨ ト 4 ヨ ト

ELE DOG

Modern definition of buildings

We start with a Coxeter system (W, S), where

- W is a (reflection) group
- S is a set of generators of W.

A building is a pair (\mathcal{C}, δ) where \mathcal{C} is a nonempty set (of chambers) and a 'distance' function $\delta : \mathcal{C} \times \mathcal{C} \to W$ such that

- $\delta(C,D) = 1$ if and only if C = D.
- **2** If $\delta(C, D) = w$, and $C' \in C$ satisfies $\delta(C', C) = s \in S$, then $\delta(C', D) = sw$ or w. If, in addition, $\ell(sw) = \ell(w) + 1$, then $\delta(C', D) = sw$.
- If $\delta(C, D) = w$, then for any $s \in S$ there is a chamber $C' \in C$ such that $\delta(C', C) = s$ and $\delta(C', D) = sw$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modern definition of buildings

We start with a Coxeter system (W, S), where

- W is a (reflection) group
- S is a set of generators of W.

A building is a pair (\mathcal{C}, δ) where \mathcal{C} is a nonempty set (of chambers) and a 'distance' function $\delta : \mathcal{C} \times \mathcal{C} \to W$ such that

- 1 $\delta(C,D) = 1$ if and only if C = D.
- **2** If $\delta(C, D) = w$, and $C' \in C$ satisfies $\delta(C', C) = s \in S$, then $\delta(C', D) = sw$ or w. If, in addition, $\ell(sw) = \ell(w) + 1$, then $\delta(C', D) = sw$.
- $\textbf{ If } \delta(C,D) = w, \text{ then for any } s \in S \text{ there is a chamber } C' \in \mathcal{C} \\ \text{ such that } \delta(C',C) = s \text{ and } \delta(C',D) = sw.$

< □> < □> < □> < □> < □ < □ < ○<

Suggestions for our next talks

- Examples (hyperbolic spaces, Riemannian manifolds,...)
- Connections to Banach space geometry
- Topologies on CAT(0) spaces
- Alternating projections
- Fixed point theory
- Groups and CAT(0) spaces
- Applications (phylogenetic trees, robotics,...)

The weak topology on CAT(0) spaces

Miroslav Bačák

CARMA, University of Newcastle

20 April 2010

↓ □ ▶ ↓ □ ▶

3

Overview

- 1976: Lim defined Δ -convergence in metric spaces
- 2004: Sosov defined Φ -convergence in metric spaces
- 2008: Kirk and Panyanak used Δ-convergence in CAT(0), and asked for topology
- 2009: Espínola and Fernández-León modified Φ-convergence to get equivalent condition for Δ-convergence in CAT(0)
- 2009: (M.B.) definition of a topology that corresponds to the above convergence

イロト イヨト イヨト

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),$$

and the asymptotic radius as

$$r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_{ν}) if

$$r(x_{\nu}, x) = r(x_{\nu}).$$

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),$$

and the asymptotic radius as

$$r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_{ν}) if

$$r(x_{\nu}, x) = r(x_{\nu}).$$

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),$$

and the asymptotic radius as

$$r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_{ν}) if

$$r(x_{\nu}, x) = r(x_{\nu}).$$

Weak convergence

Let (X, d) be a metric space. Suppose $(x_{\nu}) \subset X$ is a bounded net and define its *asymptotic radius* about a given point $x \in X$ as

$$r(x_{\nu}, x) = \limsup_{\nu} d(x_{\nu}, x),$$

and the asymptotic radius as

$$r(x_{\nu}) = \inf_{x \in X} r(x_{\nu}, x).$$

Further, we say that a point $x \in X$ is the *asymptotic center* of (x_{ν}) if

$$r(x_{\nu}, x) = r(x_{\nu}).$$

Weak convergence

Definition (Lim)

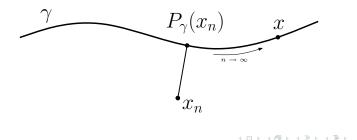
We shall say that $(x_{\nu}) \subset X$ weakly converges to a point $x \in X$ if x is the asymptotic center of each subnet of (x_{ν}) . We use the notation $x_{\nu} \xrightarrow{w} x$.

Clearly, if $x_{\nu} \to x$, then $x_{\nu} \stackrel{w}{\to} x$.

Weak convergence

Proposition (Espínola, Fernández-León)

Let (X, d) be a complete CAT(0) space, $(x_n) \subset X$ be a bounded sequence and $x \in X$. Then $x_n \xrightarrow{w} x$ if and only if, for any geodesic γ through x we have $d(x, P_{\gamma}(x_n)) \to 0$.



Weak topology

Definition (M.B. 2009)

Let X be a complete CAT(0) space. A set $M \subset X$ is open if, for any $x_0 \in M$, there are $\varepsilon > 0$ and a finite family of nontrivial geodesics $\gamma_1, \ldots, \gamma_N$ through x_0 such that

$$U_{x_0}(\varepsilon,\gamma_1,\ldots,\gamma_N) = \{x \in X : d(x_0, P_{\gamma_i}(x)) < \varepsilon, i = 1,\ldots,N\}$$

is contained in M. Denote τ the collection of all open sets of X.

The sets $U_{x_0}(\varepsilon, \gamma_1, \dots, \gamma_N)$ are convex iff X has the property (N).

《日》 《圖》 《臣》 《臣》

Weak topology

Definition (M.B. 2009)

Let X be a complete CAT(0) space. A set $M \subset X$ is open if, for any $x_0 \in M$, there are $\varepsilon > 0$ and a finite family of nontrivial geodesics $\gamma_1, \ldots, \gamma_N$ through x_0 such that

$$U_{x_0}(\varepsilon,\gamma_1,\ldots,\gamma_N) = \{x \in X : d(x_0, P_{\gamma_i}(x)) < \varepsilon, i = 1,\ldots,N\}$$

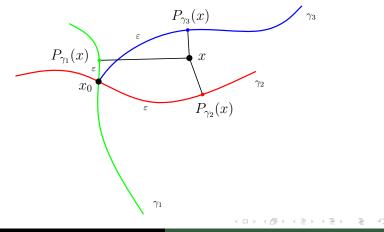
is contained in M. Denote τ the collection of all open sets of X.

The sets $U_{x_0}(\varepsilon, \gamma_1, \ldots, \gamma_N)$ are convex iff X has the property (N).

・ロト ・回ト ・ヨト ・ヨト

Weak topology

 $U_{x_0}(\varepsilon,\gamma_1,\gamma_2,\gamma_3)$



Weak topology

Theorem (M.B. 2009)

Let (X,d) be a complete CAT(0) space and τ as above. Then

1) τ is a Hausdorff topology on X,

- 2 x_ν ^τ→ x if and only if x_ν ^w→ x, for (x_ν) ⊂ X a bounded net and x ∈ X.
- ${f S}$ au is weaker than the topology induced by the metric d,
- τ is the $\sigma(X, X^*)$ -topology when X is a Hilbert space.
- **5** τ is not metrizable in general.

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- **1** au is a Hausdorff topology on X,
- **2** $x_{\nu} \xrightarrow{\tau} x$ if and only if $x_{\nu} \xrightarrow{w} x$, for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- ${f S}$ au is weaker than the topology induced by the metric d,
- τ is the $\sigma(X, X^*)$ -topology when X is a Hilbert space.
- **5** τ is not metrizable in general.

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- **1** au is a Hausdorff topology on X,
- **2** $x_{\nu} \xrightarrow{\tau} x$ if and only if $x_{\nu} \xrightarrow{w} x$, for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- τ is the $\sigma(X, X^*)$ -topology when X is a Hilbert space.
- **5** τ is not metrizable in general.

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- **1** au is a Hausdorff topology on X,
- **2** $x_{\nu} \xrightarrow{\tau} x$ if and only if $x_{\nu} \xrightarrow{w} x$, for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- **4** τ is the $\sigma(X, X^*)$ -topology when X is a Hilbert space.
- **5** au is not metrizable in general.

Weak topology

Theorem (M.B. 2009)

Let (X, d) be a complete CAT(0) space and τ as above. Then

- **1** au is a Hausdorff topology on X,
- **2** $x_{\nu} \xrightarrow{\tau} x$ if and only if $x_{\nu} \xrightarrow{w} x$, for $(x_{\nu}) \subset X$ a bounded net and $x \in X$.
- \bullet τ is weaker than the topology induced by the metric d,
- **4** τ is the $\sigma(X, X^*)$ -topology when X is a Hilbert space.
- **5** τ is not metrizable in general.

Properties of the weak topology

The weak topology in Banach spaces:

compactness = sequential compactness = countable compactness

But not in CAT(0) spaces!

Example

Consider a countable set $\{x_1, x_2, \ldots, x_\infty\}$, and for every $n \in \mathbb{N}$, join x_∞ with x_n by a geodesic of length n. Then $x_n \xrightarrow{w} x_\infty$, but is unbounded. X is sequentially w-compact, but not (countably) w-compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C} = \overline{C}^w$.

Properties of the weak topology

The weak topology in Banach spaces:

compactness = sequential compactness = countable compactness

But not in CAT(0) spaces!

Example

Consider a countable set $\{x_1, x_2, \ldots, x_\infty\}$, and for every $n \in \mathbb{N}$, join x_∞ with x_n by a geodesic of length n. Then $x_n \xrightarrow{w} x_\infty$, but is unbounded. X is sequentially *w*-compact, but not (countably) w-compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C}=\overline{C}^w.$

Properties of the weak topology

The weak topology in Banach spaces:

compactness = sequential compactness = countable compactness

But not in CAT(0) spaces!

Example

Consider a countable set $\{x_1, x_2, \ldots, x_\infty\}$, and for every $n \in \mathbb{N}$, join x_∞ with x_n by a geodesic of length n. Then $x_n \xrightarrow{w} x_\infty$, but is unbounded. X is sequentially w-compact, but not (countably) w-compact.

Let C be a *convex* set in a complete CAT(0) space. Then $\overline{C} = \overline{C}^w$.

Open problems

Let (X, d) be a complete CAT(0) space.

• Let $(x_n) \subset X$ be a bounded sequence weakly converging to a point $x \in X$. Is then the case that

$$\{x\} = \bigcap_{n \in \mathbb{N}} \overline{\operatorname{co}} \{x_n, x_{n+1}, \dots\}?$$

Note: " \subset " is known. The converse is true if we assume the property (N).

- **2** Suppose $C \subset X$ is compact. Is $\overline{\operatorname{co}} C$ compact?
- 3 Is the weak topology restricted on balls metrizable?