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The paper

Noga Alon, Combinatorial Nullstellensatz,
Combinatorics, Probability and Computing 8,
7–29 (1999)

Abstract
We present a general algebraic technique and discuss some of its
numerous applications in combinatorial number theory, in graph theory
and in combinatorics. These applications include results in additive
number theory and in the study of graph colouring problems. Many of
these are known results, to which we present unified proofs, and some
results are new.

I MathSciNet: 145 citations
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A lattice point problem

Among five lattice points
there are always two
whose midpoint is also a
lattice point.

(Pigeon hole argument)

I Harborth (1973): Let f (n,d) be the smallest number f such that
among f lattice points in Rd there are always n whose centroid is
a lattice point.

I pigeon hole principle: f (n,d) 6 (n − 1)nd + 1
I Erdős, Ginzburg, Ziv (1961): f (n,1) = 2n − 1
I Kemnitz (1983): Conjecture f (n,2) = 4n − 3
I Alon, Dubiner (1993): f (n,2) 6 5n − 6 for n > 3
I Reiher (2004): The Kemnitz-conjecture is true.
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Additive latin transversals

I G a finite abelian group of odd order.

I {a1, . . . ,ak} ⊆ G, {b1, . . . ,bk} ⊆ G

Conjecture (Snevily 1999)
There exists a permutation π ∈ Sk such that the sums ai + bπ(i) are
distinct.

I Alon (2000): It’s true for groups of prime order.

I Dasgupta, Károlyi, Serra, Szegedy (2001): It’s true for cyclic
groups.

I Arsovski (2011): It’s true.
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Hilbert’s Nullstellensatz

I F an algebraically closed field

I f ,g1, . . . ,gm ∈ F [x1, . . . , xn]

I f vanishes over all common zeros of g1,. . . , gm

Then

f k =
m∑

i=1

higi

for some integer k and polynomials hi .

In other words: f vanishes on the variety described by the gi if and
only if f lies in the radical of the ideal generated by the gi .
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Alon’s first Nullstellensatz

I F an arbitrary field, f ∈ F [x1, . . . , xn]

I S1, . . . ,Sn ⊆ F , Si 6= ∅

I gi(xi) =
∏

s∈Si

(xi − s) for i = 1, . . . ,n

I f (s1, . . . , sn) = 0 for all (s1, . . . , sn) ∈ S1 × · · · × Sn

Then there are h1, . . . ,hm ∈ F [x1, . . . , xn] with

f = h1g1 + · · ·+ hngn

and deg(hi) 6 deg(f )− deg(gi) for all i .
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Alon’s second Nullstellensatz

I F an arbitrary field, f ∈ F [x1, . . . , xn]

I deg(f ) = t1 + · · ·+ tn

I coefficient of
n∏

i=1
x ti

i nonzero

I S1, . . . ,Sn ⊆ F with |Si | > ti for all i

Then there exists (s1, . . . , sn) ∈ S1 × · · · × Sn with

f (s1, . . . , sn) 6= 0.
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A lemma
I P = P(x1, . . . , xn) polynomial over an arbitrary field F

I degi(P) 6 ti for every i

I Si ⊆ F with |Si | > ti + 1

If P vanishes on S1 × · · · × Sn then P ≡ 0.

Proof by induction on n.

I n = 1: A polynomial of degree 6 t with t + 1 zeros must be the
zero polynomial.

I n > 1: P =
tn∑

k=0

Pk (x1, . . . , xn−1)xk
n

I From the single variable case it follows that all the Pk vanish on
S1 × · · · × Sn−1.

I Then Pk ≡ 0 for all k , by induction.
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Proof of the first Nullstellensatz

Theorem (short)
If gi(xi) =

∏
s∈Si

(xi − s) and f vanishes on S1 × · · · × Sn,

then f = h1g1 + · · ·+ hngn with deg(hi) + deg(gi) 6 deg(f ).

Proof.

I For ti = |Si | − 1 we have gi(xi) = x ti+1
i −

ti∑
j=0

aijx
j
i .

I f obtained from f by repeatedly replacing x ti+1
i by

ti∑
j=0

aijx
j
i

I f − f has the form h1g1 + · · ·+ hngn with deg(hi) + deg(gi) 6 deg(f ).

I f vanishes on S1 × · · · × Sn and degi(f ) < |Si |

=⇒ f ≡ 0 by the lemma.
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Proof of the second Nullstellensatz

Theorem (short)

If deg(f ) = t1 + · · ·+ tn, the coefficient of
n∏

i=1
x ti

i nonzero and |Si | > ti

then f (s1, . . . , sn) 6= 0 for some s ∈ S1 × · · · × Sn.

Proof.
I Let |Si | = ti + 1 and gi(xi) =

∏
s∈Si

(xi − s)

I If f vanishes on S1 × · · · × Sn then f =
∑

i gihi .

I The maximum degree terms on the RHS are divisible by x ti+1
i .

I The coefficient of
n∏

i=1
x ti

i on the RHS is zero, contradiction.
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The Chevalley-Warning theorem
I p a prime

I P1, . . . ,Pm ∈ Fp[x1, . . . , xn]

I
m∑

i=1
deg(Pi) < n

If the polynomials Pi have a common zero (c1, . . . , cn), then they have
another common zero.

Proof.

I f =
m∏

i=1

[
1− Pi(x1, . . . , xn)

p−1
]
− δ

n∏
j=1

∏
a∈Fp\{cj}

(
xj − a

)
I δ is chosen such that f (c1, . . . , cn) = 0.

I deg(f ) = n(p − 1) and the coefficient of
n∏

j=1
xp−1

j is −δ 6= 0.
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The Cauchy-Davenport theorem

Let p be a prime, A,B ⊆ Fp, A,B 6= ∅. Then

|A + B| > min{p, |A|+ |B| − 1}.

Proof.
I If |A|+ |B| > p + 1, then A ∩ (x − B) 6= ∅ for every x ∈ Fp, and

therefore A + B = Fp.

I Suppose A + B ⊆ C ⊆ Fp with |C| = |A|+ |B| − 2.

I Put f (x , y) =
∏

c∈C
(x + y − c).

I Apply the Nullstellensatz with S1 = A and S2 = B.
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Restricted sums

For a polynomial h = h(x0, . . . , xk ) over Fp and for subsets A0, . . . ,Ak ⊆ Fp
define

⊕h

k∑
i=0

Ai = {a0 + · · ·+ ak : h(a0, . . . ,ak ) 6= 0}.

Theorem (Alon, Nathanson, Ruzsa 1996)

Let |Ai | = ci + 1 and put m =
k∑

i=0
ci − deg(h). If the coefficient of

k∏
i=0

xci
i in

(x0 + · · ·+ xn)
mh(x0, . . . , xk ) is nonzero then∣∣∣∣∣⊕h

k∑
i=0

Ai

∣∣∣∣∣ > m + 1.

Proof: Q(x0, . . . , xk ) = h(x0, . . . , xk )
∏
e∈E

(x0 + · · ·+ xk − e)
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Sums with distinct terms

I A0, . . . ,Ak ⊆ Fp, Ai 6= ∅

I |Ai | 6= |Aj | for 0 6 i < j 6 k

I
k∑

i=0
|Ai | 6 p +

(k+2
2

)
− 1

Then

#{a0 + · · ·+ ak : ai ∈ Ai , ai 6= aj for all i 6= j} >
k∑

i=0

|Ai | −
(

k + 2
2

)
+ 1.

Theorem (Erdős-Heilbronn conjecture)

#{a + a′ : a,a′ ∈ A, a 6= a′} > min{p, 2|A| − 3}.
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Proof

A0, . . . ,Ak ⊆ Fp, |Ai | 6= |Aj |,
k∑

i=0
|Ai | 6 p +

(k+2
2

)
− 1

#{a0 + · · ·+ ak : ai ∈ Ai , ai 6= aj for all i 6= j} >
k∑

i=0

|Ai | −
(

k + 2
2

)
+ 1.

I h(x0, . . . , xk ) =
∏

k>i>j>0
(xi − xj)

I m =
k∑

i=0
ci − deg(h) =

k∑
i=0
|Ai | −

(k+2
2

)
< p

I It remains to be checked that the coefficient of
k∏

i=0
xci

i in

(x0 + · · ·+ xk )
mh(x0, . . . , xk )

is nonzero.
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The coefficient is nonzero

The coefficient of
k∏

i=0
xci

i in (x0 + · · ·+ xk )
m ∏

k>i>j>0
(xi − xj) is

C =
∑
σ

(−1)σ
m!

(c0 − σ(0))!(c1 − σ(1))! · · · (ck − σ(k))!

where the sum is over the permutations σ with σ(i) 6 ci for all i .
On the other hand

m!

c0! · · · ck !

∏
k>i>j>0

(ci − cj) =
m!

c0! · · · ck !
det(c j

i )06i,j6k

=
m!

c0! · · · ck !
det((ci)j)06i,j6k

=
m!

c0! · · · ck !

∑
σ

(−1)σ(c0)σ(0) · · · (ck )σ(k) = C.
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