Newcastle, Jan. 2016

The Four Theorems by Lawrence M. Graves

Asen L. Dontchev

Mathematical Reviews and the University of Michigan

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The four theorems

- The Hildebrand-Graves theorem (1927)
- The (Lyusternik-) Graves theorem (1932,1950)

KORK ERKER ADE YOUR

- The Bartle-Graves theorem (1952)
- The Karush-Kuhn-Tucker theorem (1939)?

Lipschitz modulus

$$
\mathrm{lip}(f;\bar{x}) := \limsup_{x',x\to \bar{x},\atop x\neq x'} \frac{\|f(x') - f(x)\|}{\|x' - x\|}.
$$

Theorem (Hildebrand-Graves slightly extended)

Let X be a Banach space and consider a continuous function $f: X \to X$ and a linear bounded mapping $A: X \to X$ which is invertible. Suppose that

$$
\mathrm{lip}(f-A;\bar{x})\cdot\|A^{-1}\|<1.
$$

Then the inverse f^{-1} has a single-valued localization around $f(\bar{x})$ for \bar{x} which is Lipschitz continuous.

Main step: the inverse f^{-1} has a nonempty-valued localization.

Show that for any y near $f(\bar{x})$ the function

$$
x \mapsto \bar{x} + A^{-1}(y - f(x) + A(x - \bar{x}))
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

has a fixed point in a neighborhood of \bar{x} .

Given a bounded linear mapping A acting between Banach spaces X and Y, the following three conditions are equivalent:

(i) A is surjective;

(ii) A is open at any $x \in X$, meaning that for every neighborhood U of x, AU is a neighborhood of Ax ;

(iii) there exists a constant $\tau > 0$ such that

 $d(x, A^{-1}(y)) \leq \tau \|y - Ax\|$ for all $x \in X, y \in Y$.

KORKAR KERKER EL VOLO

Condition (iii) is a prototype of Metric Regularity

A mapping $F : X \rightrightarrows Y$ is said to be metrically regular at \bar{x} for \bar{y} when $\bar{y} \in F(\bar{x})$, gph F is locally closed at (\bar{x}, \bar{y}) and there is a constant $\tau \geq 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

$$
d(x, F^{-1}(y)) \leq \tau d(y, F(x)) \quad \text{ for every } (x, y) \in U \times V.
$$

The infimum of all constants $\tau > 0$ for which this inequality holds is the regularity modulus of F at \bar{x} for \bar{y} denoted by $\text{reg}(F; \bar{x} | \bar{y})$.

F is metrically regular at \bar{x} for \bar{y} if and only if F^{-1} has the Aubin property at \bar{y} for \bar{x} : there is a constant $\tau \geq 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

sup $x{\in}F^{-1}(y'){\cap}U$ $d(x, F^{-1}(y)) \leq \tau ||y - y'||$ for every $(y', y) \in V$.

(Lyusternik-) Graves theorem (1950)

Theorem.

Consider a function $f : X \rightarrow Y$ along with a bounded linear mapping $A: X \rightarrow Y$ which is surjective, such that

$$
\text{lip}(f-A;\bar{x})\cdot\text{reg}(A)<1.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

Then f is metrically regular at \bar{x} for $f(\bar{x})$.

Theorem.

Let X be a complete metric space, Y be a linear normed space 1) κ and μ positive constants with $\kappa \mu < 1$. 2) $F: X \rightrightarrows Y$ is [strongly] metrically [sub-]regular at \bar{x} for \bar{y} with $reg(F; \bar{x} | \bar{y}) \leq \kappa.$ 3) $g: X \to Y$ and $\text{lip}(g; \bar{x}) \leq \mu$. Then $g + F$ is [strongly] metrically [sub-]regular at \bar{x} for $\bar{y} + g(\bar{x})$ with

$$
\operatorname{reg}(g + F; \bar{x} | \bar{y}) \leq (\kappa^{-1} - \mu)^{-1}.
$$

KOD KAR KED KED E YORA

Theorem (Bartle–Graves theorem).

Let X and Y be Banach spaces and let $f : X \rightarrow Y$ be a function which is strictly differentiable at \bar{x} and such that the derivative $Df(\bar{x})$ is surjective. Then there is a neighborhood V of $f(\bar{x})$ along with a constant $\gamma>0$ such that f^{-1} has a continuous selection s on V with the property

$$
\|s(y)-\bar{x}\| \leq \gamma \|y-f(\bar{x})\| \text{ for every } y \in V.
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Corollary. Let $A \in \mathcal{L}(X, Y)$ be surjective. Then A^{-1} has a continuous selection (which does not need to be linear!).

Theorem.

Consider a mapping $F : X \rightrightarrows Y$ and any $(\bar{x}, \bar{y}) \in \text{gph } F$ and suppose that for some $c > 0$ the mapping $\bm{B}_{\bm{c}}(\bar{y})$ \ni y \mapsto $\digamma^{-1}(y) \cap \bm{B}_{\bm{c}}(\bar{x})$ is closed-convex-valued. Consider also a function $g: X \to Y$ with $\bar{x} \in \text{int dom } g$. Let κ and μ be nonnegative constants such that

$$
\kappa\mu<1,\quad \operatorname{reg}(\digamma;\bar{x}|\bar{y})\leq\kappa\quad\text{and}\quad\operatorname{lip}(g;\bar{x})\leq\mu.
$$

Then for every $\gamma > \kappa/(1-\kappa\mu)$ the mapping $(g+\bar H)^{-1}$ has a continuous local selection s around $g(\bar{x}) + \bar{y}$ for \bar{x} with the property

$$
\|s(y)-\bar{x}\|\leq \gamma\|y-\bar{y}\| \text{ for every } y\in V.
$$

 $f: \mathsf{R}^n \rightarrow \mathsf{R}, \, g: \mathsf{R}^n \rightarrow \mathsf{R}^m$ are $\mathsf{C}^{2}, \, (\rho, q)$ is a parameter

 $min[f(x) + \langle p, x \rangle]$ subject to $g(x) + q \leq 0$ Solution mapping $(p, q) \mapsto S(p, q)$

Lagrangian

$$
L(x,\lambda)=f(x)+\langle p,x\rangle+\langle \lambda,g(x)+q\rangle
$$

KKT system (under a constraint qualification condition)

$$
L_x(x, \lambda, p, q) = 0
$$

-L_{\lambda}(x, \lambda, p, q) + N_{R₊^m}(\lambda) \ni 0

The (normal) Lagrange multiplier mapping $(p, q) \mapsto \Lambda(p, q)$ The composite mapping $(p, q) \mapsto (S, \Lambda)(p, q)$.
KH → KH → KH → KH → NH → H → YO → O

Theorem (AD, R. T. Rockafellar 1996).

The mapping $(p, q) \mapsto (S, \Lambda)(p, q)$ has a Lipschitz continuous single-valued localization at (0,0) for $(\bar{x}, \bar{\lambda})$ with \bar{x} being an optimal solution if and only if:

(a) the strong second-order sufficient optimality condition holds; (b) the gradients of the active constraints at \bar{x} are linearly independent

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Newton method for a parameterized VI

$$
x_0 = a, \quad f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p
$$

Consider the mapping

$$
R^n \times R^n \ni (a, p) \mapsto \Xi(a, p) = \left\{ \{x_k\} \in I_\infty(R^n) \middle| x_0 = a, \right\}
$$

$$
f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p, \quad k = 1, 2, \dots \right\}
$$

Theorem (Aragon, AD, Geoffroy, Gaydu and Veliov (2011)).

Let $f(\bar{x}) + N_C(\bar{x}) \ni 0$; then $\{\bar{x}\}\in \Xi(\bar{x},0)$. The mapping Ξ has a Lipschitz continuous single-valued localization around $(\bar{x}, 0)$ for $\{\bar{x}\}\$ each value of which is a superlinearly convergent sequence to a solution $x(p)$ of $f(x) + N_C(x) \ni p$ if and only if $f + N_C$ is strongly metrically regular at \bar{x} for 0.

The Hildebrand-Graves theorem

Theorem (Clarke 1976).

Consider a function $f: \mathbb{R}^n \to \mathbb{R}^n$ which is Lipschitz continuous around \bar{x} and suppose that all matrices in Clarke's generalized Jacobian $\partial f(\bar{\mathsf{x}})$ are nonsingular. Then f^{-1} has a Lipschitz continuous single-valued localization around $f(\bar{x})$ for \bar{x} .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Theorem (finite dimensions).

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz continuous around $\bar{\mathsf{x}}$, let $\mathcal{F}: \mathcal{R}^n \rightrightarrows \mathcal{R}^n,$ and let $\bar{y} \in f(\bar{x}) + \mathcal{F}(\bar{x}).$ Suppose for every $A \in \partial f(\bar{x})$ the mapping

$$
y \mapsto (f(\bar{x}) + A(\cdot - \bar{x}) + F(\cdot))^{-1}(y)
$$

has a Lipschitz continuous localization at \bar{v} for \bar{x} . Then the mapping $(f+F)^{-1}$ has a Lipschitz continuous localization at \bar{y} for \overline{x} .

KORK ERKER ADE YOUR

For $F = 0$ reduces to Clarke's IFT. For f smooth reduces to Robinson's theorem in finite dimensions. Extension to Banach spaces

A nonsmooth Graves theorem (R. Cibulka, AD and V. Veliov)

Theorem (finite dimensions).

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz continuous around $\bar{\mathsf{x}}$, let $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ have closed graph, and let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Suppose for every $A \in \partial f(\bar{x})$ the mapping

$$
G_A: x \mapsto f(\bar{x}) + A(x - \bar{x}) + F(x)
$$

is metrically regular at \bar{x} for \bar{y} . Then the mapping $f + F$ has the same property.

KOD KAR KED KED E YORA

The case $F \equiv 0$ due to Pourciau (1977)

Conjectured theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz continuous around \overline{x} and suppose that every $A\in \partial f(\bar{\mathsf{x}})$ is surjective. Then f^{-1} has a continuous selection around $(f(\bar{x}), \bar{x})$) which is calm at $f(\bar{x})$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

THANK YOU!

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q