Newcastle, Jan. 2016

The Four Theorems by Lawrence M. Graves

Asen L. Dontchev

Mathematical Reviews and the University of Michigan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The four theorems

- The Hildebrand-Graves theorem (1927)
- The (Lyusternik-) Graves theorem (1932,1950)

- The Bartle-Graves theorem (1952)
- The Karush-Kuhn-Tucker theorem (1939)?

Lipschitz modulus

$$\operatorname{lip}(f;\bar{x}) := \limsup_{\substack{x',x\to\bar{x},\\x\neq x'}} \frac{\|f(x')-f(x)\|}{\|x'-x\|}.$$

Theorem (Hildebrand-Graves slightly extended)

Let X be a Banach space and consider a continuous function $f: X \to X$ and a linear bounded mapping $A: X \to X$ which is invertible. Suppose that

$$\lim(f - A; \bar{x}) \cdot ||A^{-1}|| < 1.$$

Then the inverse f^{-1} has a single-valued **localization** around $f(\bar{x})$ for \bar{x} which is Lipschitz continuous.

Main step: the inverse f^{-1} has a nonempty-valued localization.

Show that for any y near $f(\bar{x})$ the function

$$x\mapsto \bar{x}+A^{-1}(y-f(x)+A(x-\bar{x}))$$

has a fixed point in a neighborhood of \bar{x} .

Given a bounded linear mapping A acting between Banach spaces X and Y, the following three conditions are equivalent:

(i) A is surjective;

(ii) A is open at any $x \in X$, meaning that for every neighborhood U of x, AU is a neighborhood of Ax;

(iii) there exists a constant $\tau > 0$ such that

 $d(x, A^{-1}(y)) \le \tau \|y - Ax\|$ for all $x \in X, y \in Y$.

Condition (iii) is a prototype of Metric Regularity

A mapping $F : X \Rightarrow Y$ is said to be metrically regular at \bar{x} for \bar{y} when $\bar{y} \in F(\bar{x})$, gph F is locally closed at (\bar{x}, \bar{y}) and there is a constant $\tau \ge 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

$$dig(x, F^{-1}(y)ig) \leq au dig(y, F(x)ig) \quad ext{ for every } (x,y) \in U imes V.$$

The infimum of all constants $\tau \ge 0$ for which this inequality holds is the regularity modulus of F at \bar{x} for \bar{y} denoted by reg $(F; \bar{x} | \bar{y})$.

F is metrically regular at \bar{x} for \bar{y} if and only if F^{-1} has the Aubin property at \bar{y} for \bar{x} : there is a constant $\tau \ge 0$ together with neighborhoods *U* of \bar{x} and *V* of \bar{y} such that

 $\sup_{x\in F^{-1}(y')\cap U}d(x,F^{-1}(y))\leq \tau\|y-y'\|\quad \text{ for every } (y',y)\in V.$

(Lyusternik-) Graves theorem (1950)

Theorem.

Consider a function $f : X \to Y$ along with a bounded linear mapping $A : X \to Y$ which is surjective, such that

$$\lim(f-A;\bar{x})\cdot \operatorname{reg}(A) < 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then f is metrically regular at \bar{x} for $f(\bar{x})$.

Theorem.

Let X be a complete metric space, Y be a linear normed space 1) κ and μ positive constants with $\kappa \mu < 1$. 2) $F: X \Rightarrow Y$ is [strongly] metrically [sub-]regular at \bar{x} for \bar{y} with reg $(F; \bar{x} | \bar{y}) \leq \kappa$. 3) $g: X \rightarrow Y$ and lip $(g; \bar{x}) \leq \mu$. Then g + F is [strongly] metrically [sub-]regular at \bar{x} for $\bar{y} + g(\bar{x})$ with

$$\operatorname{reg}(g+F;\bar{x}\,|\,\bar{y}) \leq (\kappa^{-1}-\mu)^{-1}.$$

Theorem (Bartle–Graves theorem).

Let X and Y be Banach spaces and let $f: X \to Y$ be a function which is strictly differentiable at \bar{x} and such that the derivative $Df(\bar{x})$ is surjective. Then there is a neighborhood V of $f(\bar{x})$ along with a constant $\gamma > 0$ such that f^{-1} has a continuous selection s on V with the property

$$\|s(y) - \bar{x}\| \le \gamma \|y - f(\bar{x})\|$$
 for every $y \in V$.

Corollary. Let $A \in \mathcal{L}(X, Y)$ be surjective. Then A^{-1} has a continuous selection (which does not need to be linear!).

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 ─ のへぐ

Theorem.

Consider a mapping $F: X \rightrightarrows Y$ and any $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ and suppose that for some c > 0 the mapping $B_c(\bar{y}) \ni y \mapsto F^{-1}(y) \cap B_c(\bar{x})$ is closed-convex-valued. Consider also a function $g: X \to Y$ with $\bar{x} \in \operatorname{int} \operatorname{dom} g$. Let κ and μ be nonnegative constants such that

$$\kappa \mu < 1$$
, $\operatorname{reg}(F; \overline{x} | \overline{y}) \leq \kappa$ and $\operatorname{lip}(g; \overline{x}) \leq \mu$.

Then for every $\gamma > \kappa/(1 - \kappa \mu)$ the mapping $(g + F)^{-1}$ has a continuous local selection s around $g(\bar{x}) + \bar{y}$ for \bar{x} with the property

$$\|s(y) - \bar{x}\| \le \gamma \|y - \bar{y}\|$$
 for every $y \in V$.

 $f: {I\!\!R}^n
ightarrow {I\!\!R}, \, g: {I\!\!R}^n
ightarrow {I\!\!R}^m$ are C^2 , (p,q) is a parameter

 $\min[f(x)+\langle p,x
angle]$ subject to $g(x)+q\leq 0$ Solution mapping $(p,q)\mapsto S(p,q)$

Lagrangian

$$L(x,\lambda) = f(x) + \langle p, x \rangle + \langle \lambda, g(x) + q \rangle$$

KKT system (under a constraint qualification condition)

$$L_x(x, \lambda, p, q) = 0$$

 $-L_\lambda(x, \lambda, p, q) + N_{R^m_+}(\lambda) \ni 0$

The (normal) Lagrange multiplier mapping $(p,q) \mapsto \Lambda(p,q)$ The composite mapping $(p,q) \mapsto (S,\Lambda)(p,q)$

Theorem (AD, R. T. Rockafellar 1996).

The mapping $(p,q) \mapsto (S,\Lambda)(p,q)$ has a Lipschitz continuous single-valued localization at (0,0) for $(\bar{x},\bar{\lambda})$ with \bar{x} being an optimal solution if and only if: (a) the strong second-order sufficient optimality condition holds; (b) the gradients of the active constraints at \bar{x} are linearly

independent

Newton method for a parameterized VI

$$x_0 = a, \quad f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p$$

Consider the mapping

$$\mathbf{R}^n \times \mathbf{R}^n \ni (\mathbf{a}, \mathbf{p}) \mapsto \Xi(\mathbf{a}, \mathbf{p}) = \left\{ \{x_k\} \in I_\infty(\mathbf{R}^n) \, \middle| \, x_0 = \mathbf{a}, \\ f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni \mathbf{p}, \quad k = 1, 2, \dots \right\}$$

Theorem (Aragon, AD, Geoffroy, Gaydu and Veliov (2011)).

Let $f(\bar{x}) + N_C(\bar{x}) \ni 0$; then $\{\bar{x}\} \in \Xi(\bar{x}, 0)$. The mapping Ξ has a Lipschitz continuous single-valued localization around $(\bar{x}, 0)$ for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution x(p) of $f(x) + N_C(x) \ni p$ if and only if $f + N_C$ is strongly metrically regular at \bar{x} for 0.

The Hildebrand-Graves theorem

Theorem (Clarke 1976).

Consider a function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is Lipschitz continuous around \bar{x} and suppose that all matrices in Clarke's generalized Jacobian $\partial f(\bar{x})$ are nonsingular. Then f^{-1} has a Lipschitz continuous single-valued localization around $f(\bar{x})$ for \bar{x} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (finite dimensions).

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz continuous around \bar{x} , let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, and let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Suppose for every $A \in \partial f(\bar{x})$ the mapping

$$y\mapsto (f(\bar{x})+A(\cdot-\bar{x})+F(\cdot))^{-1}(y)$$

has a Lipschitz continuous localization at \bar{y} for \bar{x} . Then the mapping $(f + F)^{-1}$ has a Lipschitz continuous localization at \bar{y} for \bar{x} .

For $F \equiv 0$ reduces to Clarke's IFT. For f smooth reduces to Robinson's theorem in finite dimensions. Extension to Banach spaces

A nonsmooth Graves theorem (R. Cibulka, AD and V. Veliov)

Theorem (finite dimensions).

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz continuous around \bar{x} , let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ have closed graph, and let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Suppose for every $A \in \partial f(\bar{x})$ the mapping

$$G_A: x \mapsto f(\bar{x}) + A(x - \bar{x}) + F(x)$$

is metrically regular at \bar{x} for \bar{y} . Then the mapping f + F has the same property.

The case $F \equiv 0$ due to Pourciau (1977)

Conjectured theorem.

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz continuous around \bar{x} and suppose that every $A \in \partial f(\bar{x})$ is surjective. Then f^{-1} has a continuous selection around $(f(\bar{x}), \bar{x}))$ which is calm at $f(\bar{x})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THANK YOU!