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The Theorem

I F an arbitrary field

I f ∈ F [x1, . . . , xn] with deg(f ) = t1 + · · ·+ tn

I coefficient of
n∏

i=1
x ti

i nonzero

I S1, . . . ,Sn ⊆ F with |Si | > ti for all i

Then there exists (s1, . . . , sn) ∈ S1 × · · · × Sn with

f (s1, . . . , sn) 6= 0.
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Sumsets in vector spaces

Hopf-Stiefel function with respect to a prime p

βp(r , s) = min{n : p |
(

n
k

)
for all k ∈ {n − r + 1, . . . , s − 1}}.

Theorem
If A,B ⊆ Fm

p with |A| = r and |B| = s, then |A + B| > βp(r , s).

Proof.
Look at Q(x , y) =

∏
c∈A+B

(x + y − c) over Fq for q = pm.
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Subgraphs

I p prime

I G = (V ,E) loopless graph

I average degree > 2p − 2

I maximum degree 6 2p − 1

Then G contains a nontrivial p-regular subgraph.

Proof.
Let A = (av ,e) be the incidence matrix of G and stare at

F =
∏
v∈V

1−

(∑
e∈E

av ,exe

)p−1
−∏

e∈E

(1− xe).
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Covering the cube with hyperplanes

Let H1, . . . ,Hm be hyperplanes in Rn that cover all vertices of the unit
cube {0,1}n but one. Then m > n.

Proof.
I W.l.o.g. the origin is the uncovered vertex.

I Let 〈ai , x〉 = bi be the equation for Hi .

I Suppose m < n and consider

P = (−1)n+m+1
m∏

j=1

bj

n∏
i=1

(xi − 1)−
m∏

i=1

(〈ai , x〉 − bi).
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Problem 6 of the IMO 2007

Let n be a positive integer and consider

S = {(x , y , z) ∈ {0,1,2, . . . ,n} : x + y + z > 0}

as a set of (n + 1)3 − 1 points in R3.

Determine the smallest possible number of planes, the union of which
contains S but does not include (0,0,0).
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The Permanent Lemma

I A an n × n matrix over a field F with Per(A) 6= 0

I (b1, . . . ,bn) ∈ F n

I S1, . . . ,Sn ⊆ F with |Si | = 2

There exists x ∈ S1 × · · · × Sn such that (Ax)i 6= bi for all i .

Proof.

P =
n∏

i=1

 n∑
j=1

aijxj − bi
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Lattice points

Harborth’s function (1973)

Let f (n,d) be the smallest number f such that every set of f lattice

points in d-dimensional Euclidean space contains n points whose

centroid is again a lattice point.

Zero-sum formulation

Any sequence of length f (n,d) in Z d
n contains a subsequence of

length n which sums to 0.

I Easy bound: f (n,d) 6 (n − 1)nd + 1
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Erdős, Ginzburg, Ziv (1961): f (n,1) = 2n − 1

Proof.
I Easy to reduce to n = p prime.

I Suppose 0 6 a1 6 · · · 6 a2p−1

I ai 6= ai+p−1 for all i ∈ {1, . . . ,p − 1} (otherwise done),

I Si = {ai ,ai+p−1}

I A the (p − 1)× (p − 1) all ones matrix

I {b1, . . . ,bp−1} = Zp \ {−a2p−1}

I Permanent lemma: There exist αi ∈ Si such that

α1 + · · ·+ αp−1 = −a2p−1.

The permanent lemma also yields f (n,2) 6 5n − 6.
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The Kemnitz conjecture

I We want to show f (n,2) = 4n − 3.

I “>” is obvious.

I Easy to reduce to n = p prime.

Notation
I Fix an odd prime p, and let ≡ denote congruence modulo p.

I J, X ,. . . : finite sets of lattice points in the plane

I We write
∑

X for
∑

x∈X x .

I (k | X ): number of k -subsets of X the sum of whose elements is
divisible by p
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Chevalley-Warning
I F a finite field of characteristic p

I P1, . . . ,Pm ∈ F [x1, . . . , xn]

I
∑m

i=1 deg(Pi) < n

Then the number Ω of their common zeros in F n is divisible by p.

Proof.

I Ω ≡
∑

y1,...,yn∈F

m∏
j=1

(
1− Pj(y1, . . . , yn)q−1

)
where q = |F |.

I After expanding the product it is not difficult to check that for every
resulting monomial M we have∑

y1,...,yn∈F

M ≡ 0.
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Congruences
I If |J| = 3p − 3 then

1− (p − 1 | J)− (p | J) + (2p − 1 | J) + (2p | J) ≡ 0.

I If |J| ∈ {3p − 2,3p − 1} then 1− (p | J) + (2p | J) ≡ 0.

Proof.
I Let J = {(a1,b1), . . . , (a3p−3,b3p−3)} and consider (over Fp)

3p−3∑
i=1

xp−1
i + xp−1

3p−2,

3p−3∑
i=1

aix
p−1
i ,

3p−3∑
i=1

bix
p−1
i .

I 1 + (p − 1)p(p | J) + (p − 1)2p(2p | J) zeros with x3p−2 = 0.

I (p − 1)p(p − 1 | J) + (p − 1)2p(2p − 1 | J) zeros with x3p−2 6= 0.

12 / 16



A consequence of a congruence

If |J| = 3p − 1 then 1− (p | J) + (2p | J) ≡ 0.

Corollary (Alon, Dubiner)
If |J| = 3p and

∑
J = (0,0) then (p | J) > 0.

Proof.
I Suppose not and let J ′ ⊆ J with |J ′| = 3p − 1.

I By assumption (p | J ′) = 0 and therefore (2p | J ′) ≡ −1.

I This implies (2p | J) 6= 0.

I But from
∑

J = (0,0) it follows that (p | J) = (2p | J),
contradiction.
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More congruences
If |X | = 4p − 3 then

1− (p | X ) + (2p | X )− (3p | X )≡ 0
(p − 1 | X )− (2p − 1 | X ) + (3p − 1 | X )≡ 0

3− 2(p − 1 | X )− 2(p | X ) + (2p − 1 | X ) + (2p | X )≡ 0.

Proof.
The first two follow from Chevalley-Warning applied to

4p−3∑
i=1

xp−1
i + εxp−1

4p−2,

4p−3∑
i=1

aix
p−1
i ,

4p−3∑
i=1

bix
p−1
i

where ε ∈ {0,1}. The third one comes from∑
J∈( X

3p−3)

[1− (p − 1 | J)− (p | J) + (2p − 1 | J) + (2p | J)] ≡ 0.
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The crucial lemma

If |X | = 4p − 3 and (p | X ) = 0, then (p − 1 | X ) ≡ (3p − 1 | X ).

Proof.
I Let χ be the number of partitions X = A ∪ B ∪ C with parts of size

p − 1, p − 2 and 2p, respectively, and∑
A ≡ (0,0),

∑
B ≡

∑
X ,

∑
C ≡ (0,0).

I We can determine χ (mod p) in two different ways:

I χ ≡
∑

A(2p | X − A) ≡
∑

A−1 ≡ −(p − 1 | X )

I χ ≡
∑

B(2p | X − B) ≡
∑

X−B −1 ≡ −(3p − 1 | X )
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Putting everything together

I Adding the three congruences

−1 + (p | X )− (2p | X ) + (3p | X )≡ 0
(p − 1 | X )− (2p − 1 | X ) + (3p − 1 | X )≡ 0

3− 2(p − 1 | X )− 2(p | X ) + (2p − 1 | X ) + (2p | X )≡ 0.

and using (p − 1 | X ) ≡ (3p − 1 | X ) gives

2− (p | X ) + (3p | X ) ≡ 0.

I Therefore (p | X ) and (3p | X ) cannot vanish simultaneously.

I But then (p | X ) 6= 0 by the consequence from a congruence.
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