Applications of the combinatorial Nullstellensatz

Thomas Kalinowski

Discrete Maths seminar

The Theorem

- F an arbitrary field
- $f \in F[x_1, \ldots, x_n]$ with deg $(f) = t_1 + \cdots + t_n$
- coefficient of $\prod_{i=1}^{n} x_i^{t_i}$ nonzero
- $S_1, \ldots, S_n \subseteq F$ with $|S_i| > t_i$ for all i

Then there exists $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$ with

 $f(s_1,\ldots,s_n)\neq 0.$

Sumsets in vector spaces

Hopf-Stiefel function with respect to a prime p

$$\beta_p(r,s) = \min\{n : p \mid \binom{n}{k} \text{ for all } k \in \{n-r+1,\ldots,s-1\}\}.$$

Theorem
If
$$A, B \subseteq \mathbb{F}_p^m$$
 with $|A| = r$ and $|B| = s$, then $|A + B| \ge \beta_p(r, s)$.

Proof. Look at $Q(x, y) = \prod_{c \in A+B} (x + y - c)$ over \mathbb{F}_q for $q = p^m$.

Subgraphs

- p prime
- G = (V, E) loopless graph
- ► average degree > 2p 2
- maximum degree $\leq 2p 1$

Then G contains a nontrivial p-regular subgraph.

Proof.

Let $A = (a_{v,e})$ be the incidence matrix of G and stare at

$$F = \prod_{v \in V} \left[1 - \left(\sum_{e \in E} a_{v,e} x_e \right)^{p-1} \right] - \prod_{e \in E} (1 - x_e).$$

Covering the cube with hyperplanes

Let H_1, \ldots, H_m be hyperplanes in \mathbb{R}^n that cover all vertices of the unit cube $\{0, 1\}^n$ but one. Then $m \ge n$.

- W.I.o.g. the origin is the uncovered vertex.
- Let $\langle a_i, x \rangle = b_i$ be the equation for H_i .
- Suppose m < n and consider</p>

$$P=(-1)^{n+m+1}\prod_{j=1}^m b_j\prod_{i=1}^n (x_i-1)-\prod_{i=1}^m (\langle a_i,x
angle-b_i).$$

Problem 6 of the IMO 2007

Let *n* be a positive integer and consider

 $S = \{(x, y, z) \in \{0, 1, 2, \dots, n\} : x + y + z > 0\}$

as a set of $(n+1)^3 - 1$ points in \mathbb{R}^3 .

Determine the smallest possible number of planes, the union of which contains S but does not include (0, 0, 0).

The Permanent Lemma

- A an $n \times n$ matrix over a field F with $Per(A) \neq 0$
- ► $(b_1, \ldots, b_n) \in F^n$
- $S_1, \ldots, S_n \subseteq F$ with $|S_i| = 2$

There exists $x \in S_1 \times \cdots \times S_n$ such that $(Ax)_i \neq b_i$ for all *i*.

$$P = \prod_{i=1}^{n} \left[\sum_{j=1}^{n} a_{ij} x_j - b_j \right]$$

Lattice points

Harborth's function (1973)

Let f(n, d) be the smallest number f such that every set of f lattice points in d-dimensional Euclidean space contains n points whose centroid is again a lattice point.

Zero-sum formulation

Any sequence of length f(n, d) in Z_n^d contains a subsequence of length *n* which sums to 0.

• Easy bound:
$$f(n, d) \leq (n-1)n^d + 1$$

Erdős, Ginzburg, Ziv (1961): f(n, 1) = 2n - 1Proof.

- Easy to reduce to n = p prime.
- Suppose $0 \leq a_1 \leq \cdots \leq a_{2p-1}$
- ► $a_i \neq a_{i+p-1}$ for all $i \in \{1, ..., p-1\}$ (otherwise done),
- $S_i = \{a_i, a_{i+p-1}\}$
- A the $(p-1) \times (p-1)$ all ones matrix
- $\{b_1, ..., b_{p-1}\} = Z_p \setminus \{-a_{2p-1}\}$
- Permanent lemma: There exist $\alpha_i \in S_i$ such that

$$\alpha_1 + \cdots + \alpha_{p-1} = -a_{2p-1}.$$

The permanent lemma also yields $f(n, 2) \leq 5n - 6$.

The Kemnitz conjecture

- We want to show f(n, 2) = 4n 3.
- ► "≥" is obvious.
- Easy to reduce to n = p prime.

Notation

- Fix an odd prime p, and let \equiv denote congruence modulo p.
- J, X, \ldots : finite sets of lattice points in the plane
- We write $\sum X$ for $\sum_{x \in X} x$.
- (k | X): number of k-subsets of X the sum of whose elements is divisible by p

Chevalley-Warning

- F a finite field of characteristic p
- $\blacktriangleright P_1,\ldots,P_m\in F[x_1,\ldots,x_n]$
- $\sum_{i=1}^{m} \deg(P_i) < n$

Then the number Ω of their common zeros in F^n is divisible by p. Proof.

•
$$\Omega \equiv \sum_{y_1,\ldots,y_n \in F} \prod_{j=1}^m \left(1 - P_j(y_1,\ldots,y_n)^{q-1}\right) \text{ where } q = |F|.$$

After expanding the product it is not difficult to check that for every resulting monomial *M* we have

$$\sum_{y_1,\ldots,y_n\in F}M\equiv 0$$

Congruences

• If
$$|J| = 3p - 3$$
 then

 $1 - (p - 1 \mid J) - (p \mid J) + (2p - 1 \mid J) + (2p \mid J) \equiv 0.$

• If $|J| \in \{3p - 2, 3p - 1\}$ then $1 - (p | J) + (2p | J) \equiv 0$. Proof.

• Let $J = \{(a_1, b_1), \dots, (a_{3p-3}, b_{3p-3})\}$ and consider (over \mathbb{F}_p)

$$\sum_{i=1}^{3p-3} x_i^{p-1} + x_{3p-2}^{p-1}, \qquad \sum_{i=1}^{3p-3} a_i x_i^{p-1}, \qquad \sum_{i=1}^{3p-3} b_i x_i^{p-1}.$$

▶ $1 + (p-1)^p(p \mid J) + (p-1)^{2p}(2p \mid J)$ zeros with $x_{3p-2} = 0$.

• $(p-1)^p(p-1 \mid J) + (p-1)^{2p}(2p-1 \mid J)$ zeros with $x_{3p-2} \neq 0$.

A consequence of a congruence

If |J| = 3p - 1 then $1 - (p \mid J) + (2p \mid J) \equiv 0$.

Corollary (Alon, Dubiner) If |J| = 3p and $\sum J = (0, 0)$ then $(p \mid J) > 0$.

- Suppose not and let $J' \subseteq J$ with |J'| = 3p 1.
- ▶ By assumption $(p \mid J') = 0$ and therefore $(2p \mid J') \equiv -1$.
- This implies $(2p \mid J) \neq 0$.
- ► But from $\sum J = (0,0)$ it follows that $(p \mid J) = (2p \mid J)$, contradiction.

More congruences If |X| = 4p - 3 then

$$1 - (p \mid X) + (2p \mid X) - (3p \mid X) \equiv 0$$
$$(p - 1 \mid X) - (2p - 1 \mid X) + (3p - 1 \mid X) \equiv 0$$
$$3 - 2(p - 1 \mid X) - 2(p \mid X) + (2p - 1 \mid X) + (2p \mid X) \equiv 0.$$

Proof.

The first two follow from Chevalley-Warning applied to

$$\sum_{i=1}^{4p-3} x_i^{p-1} + \varepsilon x_{4p-2}^{p-1}, \qquad \sum_{i=1}^{4p-3} a_i x_i^{p-1}, \qquad \sum_{i=1}^{4p-3} b_i x_i^{p-1}$$

where $\varepsilon \in \{0, 1\}$. The third one comes from

 $\sum_{J \in \binom{X}{3p-3}} \left[1 - (p-1 \mid J) - (p \mid J) + (2p-1 \mid J) + (2p \mid J)\right] \equiv 0. \quad \Box$

The crucial lemma

If |X| = 4p - 3 and $(p \mid X) = 0$, then $(p - 1 \mid X) \equiv (3p - 1 \mid X)$.

- Let *χ* be the number of partitions *X* = *A* ∪ *B* ∪ *C* with parts of size *p* − 1, *p* − 2 and 2*p*, respectively, and
 - $\sum A \equiv (0,0), \qquad \sum B \equiv \sum X, \qquad \sum C \equiv (0,0).$
- We can determine $\chi \pmod{p}$ in two different ways:
 - $\chi \equiv \sum_{A} (2p \mid X A) \equiv \sum_{A} -1 \equiv -(p 1 \mid X)$
 - $\chi \equiv \sum_{B} (2p \mid X B) \equiv \sum_{X-B} -1 \equiv -(3p 1 \mid X)$

Putting everything together

Adding the three congruences

$$-1 + (p \mid X) - (2p \mid X) + (3p \mid X) \equiv 0$$
$$(p - 1 \mid X) - (2p - 1 \mid X) + (3p - 1 \mid X) \equiv 0$$
$$3 - 2(p - 1 \mid X) - 2(p \mid X) + (2p - 1 \mid X) + (2p \mid X) \equiv 0.$$
and using $(p - 1 \mid X) \equiv (3p - 1 \mid X)$ gives
$$2 - (p \mid X) + (3p \mid X) \equiv 0.$$

- Therefore $(p \mid X)$ and $(3p \mid X)$ cannot vanish simultaneously.
- But then $(p \mid X) \neq 0$ by the consequence from a congruence.