Applications of the combinatorial Nullstellensatz

Thomas Kalinowski

Discrete Maths seminar

The Theorem

- \blacktriangleright *F* an arbitrary field
- \blacktriangleright $f \in F[x_1, \ldots, x_n]$ with $\deg(f) = t_1 + \cdots + t_n$
- **Exerc**icient of $\prod_{i=1}^{n} x_i^{t_i}$ nonzero *i*=1
- ► S_1, \ldots, S_n \subseteq \digamma with $|S_i| > t_i$ for all *i*

Then there exists $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$ with

 $f(s_1, \ldots, s_n) \neq 0.$

Sumsets in vector spaces

Hopf-Stiefel function with respect to a prime *p*

$$
\beta_p(r,s)=\min\{n \; : \; p\mid \binom{n}{k} \text{ for all } k\in\{n-r+1,\ldots,s-1\}\}.
$$

Theorem
If
$$
A, B \subseteq \mathbb{F}_p^m
$$
 with $|A| = r$ and $|B| = s$, then $|A + B| \ge \beta_p(r, s)$.

Proof. Look at $Q(x, y) = \prod (x + y - c)$ over \mathbb{F}_q for $q = p^m$. *c*∈*A*+*B*

Subgraphs

- \triangleright *p* prime
- \blacktriangleright $G = (V, E)$ loopless graph
- **Exercise** average degree $> 2p 2$
- **E** maximum degree $\leq 2p 1$

Then *G* contains a nontrivial *p*-regular subgraph.

Proof.

Let $A = (a_{v,e})$ be the incidence matrix of *G* and stare at

$$
F = \prod_{v \in V} \left[1 - \left(\sum_{e \in E} a_{v,e} x_e \right)^{p-1} \right] - \prod_{e \in E} (1 - x_e).
$$

Covering the cube with hyperplanes

Let H_1,\ldots,H_m be hyperplanes in \mathbb{R}^n that cover all vertices of the unit cube $\{0, 1\}^n$ but one. Then $m \geq n$.

Proof.

- \triangleright W.l.o.g. the origin is the uncovered vertex.
- Extraphei $\langle a_i, x \rangle = b_i$ be the equation for H_i .
- \blacktriangleright Suppose $m < n$ and consider

$$
P = (-1)^{n+m+1} \prod_{j=1}^m b_j \prod_{i=1}^n (x_i - 1) - \prod_{i=1}^m (\langle a_i, x \rangle - b_i).
$$

Problem 6 of the IMO 2007

Let *n* be a positive integer and consider

S = { $(x, y, z) \in \{0, 1, 2, ..., n\}$: $x + y + z > 0$ }

as a set of $(n+1)^3-1$ points in \mathbb{R}^3 .

Determine the smallest possible number of planes, the union of which contains *S* but does not include (0, 0, 0).

The Permanent Lemma

- \blacktriangleright *A* an $n \times n$ matrix over a field *F* with Per(*A*) $\neq 0$
- \blacktriangleright $(b_1, \ldots, b_n) \in F^n$
- ► $S_1, \ldots, S_n \subseteq F$ with $|S_i| = 2$

There exists $x \in S_1 \times \cdots \times S_n$ such that $(Ax)_i \neq b_i$ for all *i*.

Proof.

$$
P = \prod_{i=1}^n \left[\sum_{j=1}^n a_{ij} x_j - b_i \right]
$$

Lattice points

Harborth's function (1973)

Let *f*(*n*, *d*) be the smallest number *f* such that every set of *f* lattice points in *d*-dimensional Euclidean space contains *n* points whose centroid is again a lattice point.

Zero-sum formulation

Any sequence of length $f(n, d)$ in Z_n^d contains a subsequence of length *n* which sums to 0.

► Easy bound:
$$
f(n, d) \leqslant (n - 1)n^d + 1
$$

Erdős, Ginzburg, Ziv (1961): $f(n, 1) = 2n - 1$ Proof.

- Easy to reduce to $n = p$ prime.
- **Example 5 8 ∂** 6 **a**₂ 6 · · · $\leq a_{2n-1}$
- \triangleright *a_i* \neq *a*_{*i*+*p*−1} for all *i* ∈ {1, . . . , *p* − 1} (otherwise done),
- \triangleright *S_i* = {*a_i*, *a_{i+p−1}*}
- \triangleright *A* the $(p-1) \times (p-1)$ all ones matrix
- \triangleright {*b*₁, . . . , *b*_{*p*−1}} = *Z*_{*p*} \ {−*a*_{2*p*−1}}
- **Permanent lemma: There exist** $\alpha_i \in S_i$ **such that**

$$
\alpha_1+\cdots+\alpha_{p-1}=-a_{2p-1}.
$$

The permanent lemma also yields $f(n, 2) \leqslant 5n - 6$.

The Kemnitz conjecture

- \triangleright We want to show $f(n, 2) = 4n 3$.
- \blacktriangleright " \geq " is obvious.
- Easy to reduce to $n = p$ prime.

Notation

- ^I Fix an odd prime *p*, and let ≡ denote congruence modulo *p*.
- \blacktriangleright *J*, *X*,...: finite sets of lattice points in the plane
- ► We write $\sum X$ for $\sum_{x \in X} x$.
- \triangleright $(k | X)$: number of *k*-subsets of X the sum of whose elements is divisible by *p*

Chevalley-Warning

- ► *F* a finite field of characteristic *p*
- P_1, \ldots, P_m ∈ $F[x_1, \ldots, x_n]$
- \blacktriangleright $\sum_{i=1}^{m}$ deg $(P_i) < n$

Then the number Ω of their common zeros in *F n* is divisible by *p*. Proof.

$$
\triangleright \Omega \equiv \sum_{y_1,\ldots,y_n \in F} \prod_{j=1}^m \left(1 - P_j(y_1,\ldots,y_n)^{q-1}\right) \text{ where } q = |F|.
$$

 \triangleright After expanding the product it is not difficult to check that for every resulting monomial *M* we have

$$
\sum_{y_1,\ldots,y_n\in F}M\equiv 0.
$$

Congruences

$$
\blacktriangleright \ \text{If } |J| = 3p - 3 \text{ then}
$$

 $1 - (p - 1 | J) - (p | J) + (2p - 1 | J) + (2p | J) \equiv 0.$

^I If |*J*| ∈ {3*p* − 2, 3*p* − 1} then 1 − (*p* | *J*) + (2*p* | *J*) ≡ 0. Proof.

► Let $J = \{(a_1, b_1), \ldots, (a_{3p-3}, b_{3p-3})\}$ and consider (over \mathbb{F}_p)

► 1 + $(p-1)^p (p | J) + (p-1)^{2p} (2p | J)$ zeros with $x_{3p-2} = 0$.

► $(p-1)^p(p-1 | J) + (p-1)^{2p}(2p-1 | J)$ zeros with $x_{3p-2} \neq 0$.

П

A consequence of a congruence

If $|J| = 3p - 1$ then $1 - (p | J) + (2p | J) \equiv 0$.

Corollary (Alon, Dubiner) *If* $|J| = 3p$ and $\sum J = (0, 0)$ then $(p | J) > 0$.

Proof.

- ► Suppose not and let $J' \subseteq J$ with $|J'| = 3p 1$.
- ► By assumption $(p | J') = 0$ and therefore $(2p | J') \equiv -1$.
- In This implies $(2p | J) \neq 0$.
- But from $\sum J = (0, 0)$ it follows that $(p | J) = (2p | J)$, contradiction.

More congruences If $|X| = 4p - 3$ then

> $1 - (p | X) + (2p | X) - (3p | X) \equiv 0$ $(p-1|X) - (2p-1|X) + (3p-1|X) \equiv 0$ $3 - 2(p - 1 | X) - 2(p | X) + (2p - 1 | X) + (2p | X) \equiv 0.$

Proof.

The first two follow from Chevalley-Warning applied to

$$
\sum_{i=1}^{4p-3} x_i^{p-1} + \varepsilon x_{4p-2}^{p-1}, \qquad \sum_{i=1}^{4p-3} a_i x_i^{p-1}, \qquad \sum_{i=1}^{4p-3} b_i x_i^{p-1}
$$

where $\varepsilon \in \{0, 1\}$. The third one comes from

 \sum $[1 - (p - 1 | J) - (p | J) + (2p - 1 | J) + (2p | J)] \equiv 0.$ *J*∈(*X* 3*p*−3)

The crucial lemma

If $|X| = 4p - 3$ and $(p | X) = 0$, then $(p − 1 | X) \equiv (3p - 1 | X)$.

Proof.

- \triangleright Let χ be the number of partitions $X = A \cup B \cup C$ with parts of size *p* − 1, *p* − 2 and 2*p*, respectively, and
	- $\sum A \equiv (0,0), \qquad \sum B \equiv \sum X, \qquad \sum C \equiv (0,0).$
- \triangleright We can determine χ (mod p) in two different ways:
	- \triangleright $\chi \equiv \sum_{A} (2p | X A) \equiv \sum_{A} -1 \equiv -(p-1 | X)$
	- \triangleright $\chi \equiv \sum_{B} (2p | X B) \equiv \sum_{X-B} -1 \equiv -(3p 1 | X)$

п

Putting everything together

 \blacktriangleright Adding the three congruences

$$
-1 + (p | X) – (2p | X) + (3p | X) \equiv 0
$$

\n
$$
(p - 1 | X) – (2p - 1 | X) + (3p - 1 | X) \equiv 0
$$

\n
$$
3 - 2(p - 1 | X) – 2(p | X) + (2p - 1 | X) + (2p | X) \equiv 0.
$$

\nand using $(p - 1 | X) \equiv (3p - 1 | X)$ gives
\n
$$
2 - (p | X) + (3p | X) \equiv 0.
$$

- Finerefore $(p | X)$ and $(3p | X)$ cannot vanish simultaneously.
- But then $(p | X) \neq 0$ by the consequence from a congruence.