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Complexity

Definition

The (worst-case) complexity of an algorithm is a measure of the
amount of time and/or space required by an algorithm for an input of a
given size.

We say that the function f (x)
is O(g(x)), if and only if there
exists a positive constant c and
a real number x0 such that for
all x ≥ x0, f (x) ≤ c g(x).
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Linear Programming

The LP Problem

maximize
n∑

i=1

cixi

subject to
n∑

i=1

a1ixi = b1

· · · = · · ·
n∑

i=1

am ixi = bm

and x1, . . . , xn ≥ 0
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Algorithms to Solve LP

Algorithm Developed by Year The Complexity

Simplex Dantzig 1947 O(2n)

Ellipsoid Khachiyan 1979 O(n4)

Interior Point Karmarkar 1984 O(n3.5)
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Comparison

n Interior Point→O(n3.5) Simplex→O(2n)

10 10−6 seconds 0.3× 10−6 seconds

20 2× 10−5 seconds 40× 10−5 seconds

40 2× 10−4 seconds 7 minutes

50 3× 10−4 seconds 5 days

100 0.004 seconds 5× 1013 centuries

1000 11 seconds 2× 10281 millennia

Polynomial Exponential
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Complexity Classes

A Challenging Question

P
?
= NP
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Definition

A Hamiltonian Cycle (HC for Short)

Given a graph G, a simple path that starts from an arbitrary node, visits
all nodes exactly once and returns to the initial node is called a
Hamiltonian cycle or a tour.

The Hamiltonian Cycle Problem (HCP for short)

Given a graph G, determine whether it contains at least one tour or not.
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Embedding in Markov Decision Processes

In 1994, Filar and Krass developed a model for the HCP by
embedding it in a perturbed Markov decision process
(MDP).

They converted the deterministic HCP to a particular
average-reward Markov decision process.

In 2000, Feinberg converted the HCP to a class of Markov
decision processes, the so-called weighted discounted
Markov decision processes.

MDP embedding implies that you can search for a
Hamiltonian cycle in a nicely structured polyhedral domain
of discounted occupational measures.
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Domain of Discounted Occupational Measures

Hβ Polytope Associated with the Graph G on n Nodes; β ∈ (0, 1)

∑
a∈O(1)

x1a − β
∑
b∈I(1)

xb1 = 1− βn

∑
a∈O(i)

xia − β
∑
b∈I(i)

xbi = 0 ; i = 2, 3, . . . , n

∑
a∈O(1)

x1a = 1

xia ≥ 0 ; ∀ i ∈ S , a ∈ O(i)
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Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in
the graph, there exists an extreme point of polytope Hβ, called
Hamiltonian extreme point.

If x̊ is a Hamiltonian extreme point, then for each i ∈ S,
∃! a ∈ O(i) so that, x̊ia > 0. These positive variables trace out a
tour in the graph.
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Illustration

Example

x12 + x13 + x14 − βx21 − βx41 = 1− β4

x21 + x23 − βx12 − βx32 = 0

x32 + x34 − βx13 − βx23 − βx43 = 0

x41 + x43 − βx14 − βx34 = 0

x12 + x13 + x14 = 1

xia ≥ 0 ; i = 1, 2, 3, 4 , a ∈ O(i)
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Illustration (Cont.)

Example (Cont.)

One particular basic feasible solution:

x12 = 1 , x23 = β , x34 = β2 , x41 = β3 ,

xia = 0 ; for all other possible values

It traces out the standard Hamiltonian
cycle 1→ 2→ 3→ 4→ 1.
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Short and Noose Cycles [Ejov et al. 2009]

A simple path starts from node 1 and returns to it in fewer
than n arcs is called a “short cycle”.

A “noose cycle” is a simple path starts from node 1 and
returns to some node other than node 1.

Example

A short cycle A noose cycle
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Hamiltonian and non-Hamiltonian Extreme Points of Hβ

Theorem (Ejov et al., 2009)

Consider a graph G and the corresponding polytope Hβ. Any
extreme point x corresponds to either a Hamiltonian cycle or a
combination of a short cycle and a noose cycle.

Example

A Hamiltonian extreme point A combined extreme point
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non-Hamiltonian Extreme Points [Eshragh and Filar, 2011]

1 Type I
(Binocular)

2 Type II

3 Type III

4 Type IV
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The Prevalence of Hamiltonian Extreme Points

What is the Ratio of the number of Hamiltonian extreme
points over the number of non-Hamiltonian ones Type I, II, III
and IV?

We utilized Erdös-Rényi Random Graphs Gn,p.
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Ratios of Expected Number of Extreme Points

Theorem (Eshragh, 2014)

In the polytope Hβ corresponding to a random graph Gn,p, we will have

1
E [# of Hamiltonian Extreme Points]

E [# of Binocular Extreme Points]
=

2(n − 2)

n − 3

2

E [# of Hamiltonian Extreme Points]

E [# of NH Extreme Points Types II & III]
=

6n2 − 12n

2n3 − 9n2 + 7n + 12

3
E [# of Hamiltonian Extreme Points]

E [# of NH Extreme Points Type IV]
= O(e−n)
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Future Work

Reducing the Feasible Region

The Wedged Hamiltonian Polytope WHβ [Eshragh et al. 2009]

Hβ

and

A(β) x ≤ b(β)
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Two Conjectures
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Future Work

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes Hβ and WHβ. For

β ∈
(
(1− 1

n−2)
1

n−2 , 1
)
, the intersection of extreme points of

these two polytopes can be partitioned into two disjoint (possibly
empty) subsets:

(i) Hamiltonian extreme points;

(ii) binocular extreme points.
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Further Developments

Conjecture (Eshragh, 2014)

(i) There exists a polynomial-time algorithm to generate
extreme points of the polytope WHβ, uniformly, at random.

(ii) For large values of β, the proportion of Hamiltonian extreme
points in the the polytope WHβ is bounded below by 1

ρ(n) ,

where ρ(n) is a polynomial function of n.
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ρ(n) ,

where ρ(n) is a polynomial function of n.
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Exploiting the Conjecture

A New Algorithm for the HCP

1 Construct the polytope WHβ corresponding to a given graph G , set
β large enough and t = 1;

2 Generate an extreme point of polytope WHβ , say xt , uniformly, at
random. If xt is a Hamiltonian extreme point, then STOP and
claim that G is Hamiltonian;

3 If t > αρ(n), then STOP and claim that with high probability, G
is non-Hamiltonian. Otherwise, set t = t + 1 and return to Step 2.

For a given Hamiltonian graph G ,

Pr(Required number of iterations > τ ) ≤ e− τ
ρ(n) ;

For a given graph G , we can solve the HCP, with high probability,
in polynomial time.
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Reducing the Feasible Region

The Convex Body CHβ [Borkar and Filar 2013]

Hβ

and

g(x;β) ≤ c(β)

Theorem (Borkar and Filar 2013)

Consider the graph G and construct the corresponding polytope
Hβ and the convex body CHβ. The graph G is non-Hamiltonian,
if and only if Hβ = CHβ. Otherwise, that is if G is Hamiltonian,
CHβ ⊂ Hβ.
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Further Developments

Volume Estimation

Perhaps, a good tool to measure the differences between the
polytope Hβ and the convex body CHβ is comparing their volumes;

However, finding the volume of a polytope is #P-Hard;

In 1988, Dyer and Frieze showed that we cannot even approximate
the volume a convex body with a desired level of precision in
polynomial-time by using any deterministic algorithm.

In 1991, Dyer er al. developed a probabilistic algorithm to
approximate the volume a convex body with a desired level of
precision in polynomial-time.

Developing a polynomial-time probabilistic algorithm to compare
the volumes of the polytope Hβ and the convex body CHβ .
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Quotation

Albert Einstein

“You can’t solve a problem with the same mind that created it.”
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