Random Walks, Polyhedra and Hamiltonian Cycles

Ali Eshragh

School of Mathematical and Physical Sciences & CARMA The University of Newcastle, Australia

CARMA Workshop on Optimization, Nonlinear Analysis, Randomness and Risk Newcastle, Australia 12 July, 2014

メロメ メ御 メメ ミメ メミメ

Complexity

[Introduction](#page-2-0) [NP Problems](#page-14-0)

Definition

The (worst-case) complexity of an algorithm is a measure of the amount of time and/or space required by an algorithm for an input of a given size.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

重

Complexity

Definition

The (worst-case) complexity of an algorithm is a measure of the amount of time and/or space required by an algorithm for an input of a given size.

[Introduction](#page-1-0) [NP Problems](#page-14-0)

• We say that the function $f(x)$ is $\mathcal{O}(g(x))$, if and only if there exists a positive constant c and a real number x_0 such that for all $x > x_0$, $f(x) < c g(x)$.

[The Hamiltonian Cycle Problem](#page-19-0) [Polyhedral Domains for the HCP](#page-26-0) [Two New Counterpart Problems for the HCP](#page-47-0)

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Linear Programming

The \mathcal{LP} Problem maximize $\sum_{n=1}^{\infty}$ $i=1$ $c_i x_i$ subject to $\sum_{n=1}^{n}$ $i=1$ $a_{1i}x_i = b_1$ $\cdots = - \cdots$ $\sum_{n=1}^{n}$ $i=1$ $a_{m i} x_i = b_m$ and $x_1, \ldots, x_n \geq 0$

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Algorithms to Solve LP

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Algorithms to Solve LP

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Algorithms to Solve LP

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

n Interior Point $\rightarrow \mathcal{O}(\mathsf{n}^{3.5})$) Simplex $\rightarrow \mathcal{O}(2^n)$

 10 10^{-6} seconds seconds 0.3×10^{-6} seconds

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

20 2×10^{-5} seconds seconds 40×10^{-5} seconds

イロト イ押 トイモト イモト

- 국

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

Comparison

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Polynomial Exponential

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

Complexity Classes

[Introduction](#page-1-0) [NP Problems](#page-14-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Complexity Classes

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 \equiv

[The Hamiltonian Cycle Problem](#page-19-0) [Polyhedral Domains for the HCP](#page-26-0) [Two New Counterpart Problems for the HCP](#page-47-0)

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Complexity Classes

A Challenging Question

$$
P \stackrel{?}{=} NP
$$

Ali Eshragh [Random Walks, Polyhedra and Hamiltonian Cycles](#page-0-0)

[The Hamiltonian Cycle Problem](#page-19-0) [Polyhedral Domains for the HCP](#page-26-0) [Two New Counterpart Problems for the HCP](#page-47-0)

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Complexity Classes

A Challenging Question

$$
P \stackrel{?}{=} NP
$$

Ali Eshragh [Random Walks, Polyhedra and Hamiltonian Cycles](#page-0-0)

[The Hamiltonian Cycle Problem](#page-19-0) [Polyhedral Domains for the HCP](#page-26-0) [Two New Counterpart Problems for the HCP](#page-47-0)

[Introduction](#page-1-0) [NP Problems](#page-14-0)

Complexity Classes

$$
P \stackrel{?}{=} NP
$$

Ali Eshragh [Random Walks, Polyhedra and Hamiltonian Cycles](#page-0-0)

Definition

[Introduction](#page-21-0) [Recent Development](#page-22-0)

A Hamiltonian Cycle (HC for Short)

Given a graph G, a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a Hamiltonian cycle or a tour.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

后

Definition

[Introduction](#page-21-0) [Recent Development](#page-22-0)

A Hamiltonian Cycle (HC for Short)

Given a graph G , a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a Hamiltonian cycle or a tour.

The Hamiltonian Cycle Problem (HCP for short)

Given a graph G, determine whether it contains at least one tour or not.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 Ω

Definition

[Introduction](#page-19-0) [Recent Development](#page-22-0)

A Hamiltonian Cycle (HC for Short)

Given a graph G , a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a Hamiltonian cycle or a tour.

The Hamiltonian Cycle Problem (HCP for short)

Given a graph G, determine whether it contains at least one tour or not.

Hamiltonian Graph

non-Hamiltonian Graph

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

[Introduction](#page-19-0) [Recent Development](#page-25-0)

Embedding in Markov Decision Processes

• In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process (MDP).

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

后

[Introduction](#page-19-0) [Recent Development](#page-25-0)

Embedding in Markov Decision Processes

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process (MDP).
- They converted the deterministic HCP to a particular average-reward Markov decision process.

イロト イ母 トイラト イラト

[Introduction](#page-19-0) [Recent Development](#page-25-0)

Embedding in Markov Decision Processes

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process (MDP).
- They converted the deterministic HCP to a particular average-reward Markov decision process.
- In 2000, Feinberg converted the HCP to a class of Markov decision processes, the so-called weighted discounted Markov decision processes.

イロト イ母 トイラト イラト

 Ω

[Introduction](#page-19-0) [Recent Development](#page-22-0)

Embedding in Markov Decision Processes

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process (MDP).
- They converted the deterministic HCP to a particular average-reward Markov decision process.
- In 2000, Feinberg converted the HCP to a class of Markov decision processes, the so-called **weighted discounted** Markov decision processes.
- MDP embedding implies that you can search for a Hamiltonian cycle in a nicely structured **polyhedral domain** of discounted occupational measures.

イロメ イ部メ イヨメ イヨメー

 \mathcal{H}_{β} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Domain of Discounted Occupational Measures

\mathcal{H}_{β} Polytope Associated with the Graph G on n Nodes; $\beta \in (0,1)$

$$
\sum_{a \in O(1)} x_{1a} - \beta \sum_{b \in I(1)} x_{b1} = 1 - \beta^{n}
$$
\n
$$
\sum_{a \in O(i)} x_{ia} - \beta \sum_{b \in I(i)} x_{bi} = 0; i = 2, 3, ..., n
$$
\n
$$
\sum_{a \in O(1)} x_{1a} = 1
$$
\n
$$
x_{ia} \ge 0; \forall i \in S, a \in O(i)
$$

イロト イ押 トイモト イモト

 $2Q$

隱

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called Hamiltonian extreme point.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called Hamiltonian extreme point.

If $\hat{\mathbf{x}}$ is a Hamiltonian extreme point, then for each $i \in \mathcal{S}$, $\exists!$ a \in O(i) so that, $\lambda_{ia} > 0$. These positive variables trace out a tour in the graph.

メロメ メ御 メメミメメミメ

 \mathcal{H}_{β} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called Hamiltonian extreme point.

If $\hat{\mathbf{x}}$ is a Hamiltonian extreme point, then for each $i \in \mathcal{S}$, $\exists!$ a \in O(i) so that, $\lambda_{ia} > 0$. These positive variables trace out a tour in the graph.

Illustration

Example

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君

 \mathcal{H}_{β} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Illustration (Cont.)

Example (Cont.)

One particular basic feasible solution:

$$
x_{12}=1\,,\ x_{23}=\beta\,,\ x_{34}=\beta^2\,,\ x_{41}=\beta^3\,,
$$

 $x_{ia} = 0$; for all other possible values

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 $2Q$

唾

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Illustration (Cont.)

Example (Cont.)

One particular basic feasible solution:

$$
x_{12}=1\,,\,\,x_{23}=\beta\,,\,\,x_{34}=\beta^2\,,\,\,x_{41}=\beta^3\,,
$$

 $x_{ia} = 0$; for all other possible values

It traces out the standard Hamiltonian cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$.

イロメ イ部メ イヨメ イヨメー

 $2Q$

后

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-35-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Short and Noose Cycles [Ejov et al. 2009]

A simple path starts from node 1 and returns to it in fewer than n arcs is called a "short cycle".

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

唾

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-35-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Short and Noose Cycles [Ejov et al. 2009]

- A simple path starts from node 1 and returns to it in fewer than n arcs is called a "short cycle".
- A "noose cycle" is a simple path starts from node 1 and returns to some node other than node 1.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Short and Noose Cycles [Ejov et al. 2009]

- A simple path starts from node 1 and returns to it in fewer than n arcs is called a "short cycle".
- A "noose cycle" is a simple path starts from node 1 and returns to some node other than node 1.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Hamiltonian and non-Hamiltonian Extreme Points of \mathcal{H}_{β}

Theorem (Ejov et al., 2009)

Consider a graph G and the corresponding polytope \mathcal{H}_{β} . Any extreme point x corresponds to either a **Hamiltonian cycle** or a combination of a short cycle and a noose cycle.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Hamiltonian and non-Hamiltonian Extreme Points of \mathcal{H}_{β}

Theorem (Ejov et al., 2009)

Consider a graph G and the corresponding polytope \mathcal{H}_{β} . Any extreme point x corresponds to either a **Hamiltonian cycle** or a combination of a short cycle and a noose cycle.

 $H_{\mathscr{B}}$ [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

non-Hamiltonian Extreme Points [Eshragh and Filar, 2011]

1 Type I (Binocular)

イロメ イ御メ イヨメ イヨメ

 $2Q$

隱

 $H_{\mathcal{B}}$ [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

non-Hamiltonian Extreme Points [Eshragh and Filar, 2011]

1 Type I (Binocular)

2 Type II

メロメ メ御 メメ ミメ メミメ

重

 $H_{\mathscr{B}}$ [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

non-Hamiltonian Extreme Points [Eshragh and Filar, 2011]

メロメ メ御 メメ ミメ メミメ

重

 $H_{\mathscr{B}}$ [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

non-Hamiltonian Extreme Points [Eshragh and Filar, 2011]

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-43-0)

The Prevalence of Hamiltonian Extreme Points

• What is the **Ratio** of the number of Hamiltonian extreme points over the number of non-Hamiltonian ones Type I, II, III and IV?

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

The Prevalence of Hamiltonian Extreme Points

- What is the **Ratio** of the number of Hamiltonian extreme points over the number of non-Hamiltonian ones Type I, II, III and IV?
- We utilized Erdös-Rényi Random Graphs G_{n.p}.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Ratios of Expected Number of Extreme Points

Theorem (Eshragh, 2014)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

隱

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Ratios of Expected Number of Extreme Points

Theorem (Eshragh, 2014)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

 \mathbf{D} \overline{E} \neq of Hamiltonian Extreme Points] $\frac{E[\text{# of Hamiltonian Extreme Points}]}{E[\text{# of Binocular Extreme Points}]} = \frac{2(n-2)}{n-3}$ $n-3$

 \bullet $E[\text{# of Hamiltonian Extreme Points}]$ $E[\text{# of Hamiltonian Extreme Points}]$
 $E[\text{# of NH Extreme Points Types II & III}]$ = $\frac{6n^2 - 12n}{2n^3 - 9n^2 + 7n}$ $2n^3 - 9n^2 + 7n + 12$

イロト イ押 トイモト イモト

 H _{*®*} [Polytope](#page-26-0) [Extreme Points of](#page-33-0) \mathcal{H}_{β} [Random Graphs](#page-42-0)

Ratios of Expected Number of Extreme Points

Theorem (Eshragh, 2014)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

 \mathbf{D} \overline{E} \neq of Hamiltonian Extreme Points] $\frac{E[\text{# of Hamiltonian Extreme Points}]}{E[\text{# of Binocular Extreme Points}]} = \frac{2(n-2)}{n-3}$ $n-3$

 \bullet $E[\text{# of Hamiltonian Extreme Points}]$ $E[\text{# of Hamiltonian Extreme Points}]$
 $E[\text{# of NH Extreme Points Types II & III}]$ = $\frac{6n^2 - 12n}{2n^3 - 9n^2 + 7n}$ $2n^3 - 9n^2 + 7n + 12$

 \mathbf{B} \mathbf{E} \neq of Hamiltonian Extreme Points $\overline{\mathbf{S}}$ $\frac{E[\# \text{ of NH}$ Extreme Points Type IV $\ket{\text{ = 0}} = \text{0}(\text{e}^{-n})$

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶ ...

 $W\mathcal{H}_{\beta}$ [Polytope](#page-48-0) [Two Conjectures](#page-52-0) \mathcal{CH}_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Reducing the Feasible Region

The Wedged Hamiltonian Polytope $W\mathcal{H}_{\beta}$ [Eshragh et al. 2009]

 \mathcal{H}_{β} and $A(\beta)$ x < b(β)

イロト イ押 トイモト イモト

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Reducing the Feasible Region

The Wedged Hamiltonian Polytope $W\mathcal{H}_{\beta}$ [Eshragh et al. 2009]

 \mathcal{H}_{β} and $A(\beta)$ x < b(β)

 $2Q$

扂

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and $W\mathcal{H}_{\beta}$. For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1 \right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

メロメ メ御 メメミメメミメ

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and $W\mathcal{H}_{\beta}$. For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1 \right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

(i) Hamiltonian extreme points;

メロメ メ御 メメミメメミメ

へのへ

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and $W\mathcal{H}_{\beta}$. For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1 \right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

(i) Hamiltonian extreme points;

(ii) binocular extreme points.

メロメ メ御 メメミメメミメ

へのへ

 WH _β [Polytope](#page-47-0) [Two Conjectures](#page-54-0) CH _β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Further Developments

メロメ メ都 メメ きょくきょ

 \equiv

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-54-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Further Developments

Conjecture (Eshragh, 2014)

 (i) There exists a **polynomial-time algorithm** to generate extreme points of the polytope $W\mathcal{H}_{\beta}$, uniformly, at random.

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Further Developments

Conjecture (Eshragh, 2014)

- (i) There exists a **polynomial-time algorithm** to generate extreme points of the polytope $W\mathcal{H}_{\beta}$, uniformly, at random.
- (ii) For large values of β , the proportion of Hamiltonian extreme points in the the polytope \mathcal{WH}_{β} is bounded below by $\frac{1}{\rho(\mathsf{n})},$ where $\rho(n)$ is a polynomial function of n.

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) \mathcal{CH}_B [Convex Body](#page-60-0) [Future Work](#page-62-0)

Exploiting the Conjecture

A New Algorithm for the HCP

1 Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and $t = 1$;

メロメ メ御 メメ ミメ メミメ

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Exploiting the Conjecture

A New Algorithm for the HCP

- **1** Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G , set β large enough and $t = 1$;
- \bullet Generate an extreme point of polytope $\mathcal{W}\mathcal{H}_{\beta}$, say x_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then \textbf{STOP} and claim that G is Hamiltonian:

メロメ メ御 メメ ミメ メミメ

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Exploiting the Conjecture

A New Algorithm for the HCP

- **1** Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and $t = 1$;
- \bullet Generate an extreme point of polytope $\mathcal{W}\mathcal{H}_{\beta}$, say x_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then \textbf{STOP} and claim that G is Hamiltonian:
- **3** If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, G is non-Hamiltonian. Otherwise, set $t = t + 1$ and return to Step 2.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Exploiting the Conjecture

A New Algorithm for the HCP

- **1** Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and $t = 1$;
- \bullet Generate an extreme point of polytope $\mathcal{W}\mathcal{H}_{\beta}$, say x_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then \textbf{STOP} and claim that G is Hamiltonian:
- **3** If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, G is non-Hamiltonian. Otherwise, set $t = t + 1$ and return to Step 2.

 \bullet For a given Hamiltonian graph G ,

Pr(Required number of iterations $> \tau$) $\leq e^{-\frac{\tau}{\rho(n)}}$;

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Exploiting the Conjecture

A New Algorithm for the HCP

- **1** Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and $t = 1$;
- \bullet Generate an extreme point of polytope $\mathcal{W}\mathcal{H}_{\beta}$, say x_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then \textbf{STOP} and claim that G is Hamiltonian:
- **3** If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, G is non-Hamiltonian. Otherwise, set $t = t + 1$ and return to Step 2.
	- \bullet For a given Hamiltonian graph G ,

Pr(Required number of iterations $> \tau$) $\leq e^{-\frac{\tau}{\rho(n)}}$;

 \bullet For a given graph G, we can solve the HCP, with high probability, in polynomial time. イロト イ押 トイモト イモト

 $W\mathcal{H}_{\beta}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH _β [Convex Body](#page-61-0) [Future Work](#page-62-0)

Reducing the Feasible Region

The Convex Body \mathcal{CH}_{β} [Borkar and Filar 2013]

 \mathcal{H}_{β} and $g(x; \beta) \leq c(\beta)$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_B [Convex Body](#page-60-0) [Future Work](#page-62-0)

Reducing the Feasible Region

The Convex Body \mathcal{CH}_{β} [Borkar and Filar 2013]

 \mathcal{H}_{β} and $g(x; \beta) \leq c(\beta)$

Theorem (Borkar and Filar 2013)

Consider the graph G and construct the corresponding polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} . The graph G is non-Hamiltonian, if and only if $\mathcal{H}_{\beta} = \mathcal{CH}_{\beta}$. Otherwise, that is if G is **Hamiltonian**, $\mathcal{CH}_{\beta}\subset\mathcal{H}_{\beta}$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-66-0)

Further Developments

Volume Estimation

• Perhaps, a good tool to measure the differences between the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} is comparing their **volumes**;

イロト イ押 トイモト イモト

 \equiv

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-66-0)

Further Developments

Volume Estimation

- Perhaps, a good tool to measure the differences between the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} is comparing their **volumes**;
- \bullet However, finding the volume of a polytope is $\#P$ -Hard;

イロト イ押 トイモト イモト

 \equiv

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-66-0)

Further Developments

Volume Estimation

- **•** Perhaps, a good tool to measure the differences between the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} is comparing their **volumes**;
- \bullet However, finding the volume of a polytope is $\#P$ -Hard;
- In 1988, Dyer and Frieze showed that we cannot even approximate the volume a convex body with a desired level of precision in polynomial-time by using any deterministic algorithm.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 \equiv

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-66-0)

Further Developments

Volume Estimation

- **•** Perhaps, a good tool to measure the differences between the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} is comparing their **volumes**;
- \bullet However, finding the volume of a polytope is $\#P$ -Hard;
- In 1988, Dyer and Frieze showed that we cannot even approximate the volume a convex body with a desired level of precision in polynomial-time by using any deterministic algorithm.
- In 1991, Dyer er al. developed a **probabilistic** algorithm to approximate the volume a convex body with a desired level of precision in polynomial-time.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 \equiv

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Further Developments

Volume Estimation

- **•** Perhaps, a good tool to measure the differences between the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} is comparing their **volumes**;
- \bullet However, finding the volume of a polytope is $\#P$ -Hard;
- In 1988, Dyer and Frieze showed that we cannot even approximate the volume a convex body with a desired level of precision in polynomial-time by using any deterministic algorithm.
- In 1991, Dyer er al. developed a **probabilistic** algorithm to approximate the volume a convex body with a desired level of precision in polynomial-time.
- **•** Developing a **polynomial-time probabilistic algorithm** to compare the volumes of the polytope \mathcal{H}_{β} and the convex body \mathcal{CH}_{β} .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

E

Quotation

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_B [Convex Body](#page-60-0) [Future Work](#page-62-0)

Albert Einstein

"You can't solve a problem with the same mind that created it."

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

Acknowledgement

$W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

Collaborators

- **Prof. Jerzy Filar, Flinders University, Australia**
- A/Prof. Vladimir Ejov, Flinders University, Australia
- Dr Michael Haythorpe, Flinders University, Australia
- Dr Giang Nguyen, The University of Adelaide, Australia
- **Prof.** Vivek Borkar, Indian Institute of Technology, India
- Prof. Eugene Feinberg, SUNY, US

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Acknowledgement

A New Research Team

Dr Thomas Kalinowski, The University of Newcastle, Australia

 $W\mathcal{H}_{B}$ [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_β [Convex Body](#page-60-0) [Future Work](#page-62-0)

- Mr Mohsen Reisi, The University of Newcastle, Australia
- **•** Prof. Jerzy Filar, Flinders University, Australia
- A/Prof. Catherine Greenhill, UNSW, Australia
- Mr Asghar Moeini, Flinders University, Australia
- **Prof. Martin Dyer, University of Leeds, UK**

メロメ メ御 メメミメメミメ

 WH _β [Polytope](#page-47-0) [Two Conjectures](#page-52-0) CH_B [Convex Body](#page-60-0) [Future Work](#page-62-0)

Thank you \cdots Questions?

Ali Eshragh [Random Walks, Polyhedra and Hamiltonian Cycles](#page-0-0)

K ロ X K 個 X K 差 X K 差 X … 差