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Collections of sets

Regularity:

Constraint qualifications

Qualification conditions in subdifferential calculus
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Absence of regularity ⇐⇒ Stationarity

Optimality =⇒ Extremality =⇒ (Approximate) Stationarity
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Semiregularity

X – Banach space
Ω := {Ω1, . . . ,Ωm} ⊂ X (m > 1) x̄ ∈

⋂m
i=1 Ωi

Definition
Ω is semiregular at x̄ if ∃α, δ > 0 such that

m⋂
i=1

(Ωi − xi)
⋂

Bρ(x̄) 6= ∅ ∀ρ ∈ (0, δ)

∀xi ∈ X (i = 1, . . . ,m) with max
1≤i≤m

‖xi‖ < αρ

(regularity — Kruger, 2006; property (R)S — Kruger, 2009)
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Subregularity

X – Banach space
Ω := {Ω1, . . . ,Ωm} ⊂ X (m > 1) x̄ ∈

⋂m
i=1 Ωi

Definition
Ω is subregular at x̄ if ∃α, δ > 0 such that

m⋂
i=1

(Ωi + (αρ)B)
⋂

Bδ(x̄) ⊆
m⋂
i=1

Ωi + ρB ∀ρ ∈ (0, δ)
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Uniform regularity

X – Banach space
Ω := {Ω1, . . . ,Ωm} ⊂ X (m > 1) x̄ ∈

⋂m
i=1 Ωi

Definition
Ω is uniformly regular at x̄ if ∃α, δ > 0 such that

m⋂
i=1

(Ωi − ωi − xi)
⋂

(ρB) 6= ∅ ∀ρ ∈ (0, δ)

∀ωi ∈ Ωi ∩ Bδ(x̄) and xi ∈ X (i = 1, . . . ,m) with max
1≤i≤m

‖xi‖ < αρ

(regularity — Kruger, 2005; strong regularity — Kruger, 2006;
property (UR)S — Kruger, 2009)

Semiregularity ⇐= Uniform regularity =⇒ Subregularity
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Examples: extremality (Kruger, Mordukhovich, 1980)

x̄Ω1 Ω2

x̄Ω1 Ω2 x̄Ω1 Ω2 x̄ Ω

No semiregularity Subregularity
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Examples: stationarity

x̄Ω1 Ω2

No semiregularity

x̄Ω1 Ω2

ω1

ω2

No uniform regularity

Subregularity
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Examples: subregularity vs semiregularity

x̄

Ω1

Ω2

Semiregularity No subregularity
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Examples:

sub-/semi-regularity vs uniform regularity

x̄

Ω1 = Ω2

Semiregularity Subregularity

No uniform regularity
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Examples: uniform regularity

x̄Ω1 Ω2
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Metric characterizations

Ω is semiregular at x̄ ⇐⇒ ∃γ, δ > 0 such that

γd

(
x̄ ,

m⋂
i=1

(Ωi − xi)

)
≤ max

1≤i≤m
‖xi‖ ∀xi ∈ δB (i = 1, . . . ,m)

Ω is subregular at x̄ ⇐⇒ ∃γ, δ > 0 such that

γd

(
x ,

m⋂
i=1

Ωi

)
≤ max

1≤i≤m
d(x ,Ωi) ∀x ∈ Bδ(x̄)

(Bounded, local) linear regularity (Bauschke, Borwein, 1993)
Linear estimate, linear coherence (Penot, 1998, 2013)
Metric inequality (Ngai, Théra, 2001)
(Dolecki, 1982; Ioffe, 1989; Jourani, 1995; . . . )
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Metric characterizations

Ω is uniformly regular at x̄ ⇐⇒ ∃γ, δ > 0 such that

γd

(
x ,

m⋂
i=1

(Ωi − xi)

)
≤ max

1≤i≤m
d(x + xi ,Ωi)

for any x ∈ Bδ(x̄), xi ∈ δB (i = 1, . . . ,m)
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Dual characterizations: extremality

x̄Ω1 Ω2

x̄Ω1 Ω2 x̄Ω1 Ω2 x̄ Ω

Extremal principle – separabilty
(Kruger, Mordukhovich, 1980; Mordukhovich, Shao, 1996)
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Dual characterizations: Fréchet normals

x ∈ Ω
Fréchet normal cone to Ω at x :

NΩ(x) :=

{
x∗ ∈ X ∗

∣∣ lim sup
u→x , u∈Ω\{x}

〈x∗, u − x〉
‖u − x‖

≤ 0

}
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Dual characterizations: uniform regularity

X – Asplund space, Ω1, . . . ,Ωm – closed

Theorem
Ω is uniformly regular at x̄ ⇐⇒ ∃α, δ > 0 such that∥∥∥∥∥

m∑
i=1

x∗i

∥∥∥∥∥ ≥ α

∀ωi ∈ Ωi ∩ Bδ(x̄), x∗i ∈ NΩi
(ωi) (i = 1, . . . ,m) satisfying∑m

i=1 ‖x∗i ‖ = 1

(property (URD)S — Kruger, 2009)
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Dual characterizations: subregularity

X – Asplund space, Ω1, . . . ,Ωm – closed

Theorem
Ω is subregular at x̄ if ∃α, δ, ε > 0 such that∥∥∥∥∥

m∑
i=1

x∗i

∥∥∥∥∥ > α

∀x ∈ Bδ(x̄), ωi ∈ Ωi ∩ Bδ(x), x∗i ∈ NΩi
(ωi) + δB∗ (i = 1, . . . ,m)

satisfying

ωj 6= x for some j ∈ {1, . . . ,m}∑m
i=1 ‖x∗i ‖ = 1

x∗i = 0 if ‖x − ωi‖ < max1≤j≤m ‖x − ωj‖
〈x∗i , x − ωi〉 ≥ ‖x∗i ‖(‖x − ωi‖ − ε) (i = 1, . . . ,m)
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Collections of sets vs set-valued mappings

X – Banach space
Ω := {Ω1, . . . ,Ωm} ⊂ X (m > 1) x̄ ∈

⋂m
i=1 Ωi

F : X ⇒ Xm: F (x) := (Ω1 − x)× . . .× (Ωm − x) (Ioffe, 2000)

Proposition

Ω is semiregular at x̄ ⇐⇒ F is metrically semiregular at (x̄ , 0),
i.e., ∃γ, δ > 0 such that

γd
(
x̄ ,F−1(y)

)
≤ ‖y‖ ∀y ∈ δBm
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Collections of sets vs set-valued mappings

X – Banach space
Ω := {Ω1, . . . ,Ωm} ⊂ X (m > 1) x̄ ∈

⋂m
i=1 Ωi

F : X ⇒ Xm: F (x) := (Ω1 − x)× . . .× (Ωm − x) (Ioffe, 2000)

Proposition

Ω is uniformly regular at x̄ ⇐⇒ F is metrically regular at (x̄ , 0),
i.e., ∃γ, δ > 0 such that

γd
(
x ,F−1(y)

)
≤ d (y ,F (x)) ∀x ∈ Bδ(x̄), y ∈ δBm
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Collections of sets vs set-valued mappings

X ,Y – Banach spaces
F : X ⇒ Y , (x̄ , ȳ) ∈ gphF

Ω1 = gphF , Ω2 = X × {ȳ} ∈ X × Y , Ω := {Ω1,Ω2}

Theorem
1 F is metrically semiregular at (x̄ , ȳ) ⇐⇒ Ω is semiregular

at (x̄ , ȳ)

2 F is metrically subregular at (x̄ , ȳ) ⇐⇒ Ω is subregular at
(x̄ , ȳ)

3 F is metrically regular at (x̄ , ȳ) ⇐⇒ Ω is uniformly regular
at (x̄ , ȳ)
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3 F is metrically regular at (x̄ , ȳ) ⇐⇒ Ω is uniformly regular
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Concluding remarks

Quantitative characterizations

Hölder-like properties

Infinite collections
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