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Introduction of nonsmooth optimization

Consider the following unconstrained nonsmooth optimization (NSO) problem:

min
x∈Rn

f (x)

f : Rn → R ∪ {+∞} is locally Lipschitz continuous (LLC).

Some common assumptions in literature: quasi-differentiable, semi-smooth,
prox-regular, etc.
Nonsmooth first order necessary optimality condition 0 ∈ ∂f (x∗).

∂C f (x) := {s ∈ Rn|sTd ≤ f ◦(x ; d) for all d ∈ Rn}(f is LLC)

= co{lim
j
∇f (y j)|y j → x ,∇f (y j) exists and converges}. (1)

∂M f (x) := {s ∈ Rn|(s,−1) ∈ N((x , f (x)); epif )} = limsup
y

f→x
∂̂f (y) (f is l.s.c.)

∂̂f (y) := {s ∈ Rn| lim inf
z→y

f (z)− f (y)− sT (z − y)

‖z − y‖
≥ 0}.

Subdifferentials are not inner semicontinuous, i.e. ∂f (x̄) * lim inf
x→x̄

∂f (x).
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Introduction of bundle method

• In 1975, Philip Wolfe and Claude Lemaréchal separately developed bundle method.

• The name bundle was born in an IIASA workshop in 1977 and it means
{(yi , f (yi ), si )|i ∈ I} where yi are previous iteration points, si ∈ ∂f (yi ),
and I is index set.

• Based on a cutting plane model
m(xk ; d) = max

{
f (yi ) + sTi (xk + d − yi )|i = 1, ...lk , si ∈ ∂f (yi )

}
bundle

methods use search direction d(λk) = arg min
d∈Rn

{
m(xk ; d) + 1

2λk
||d ||2

}
by solving

a quadratic subproblem (QP) and then perform a line search on the direction.

• Solving large-scale QP is time consuming. Although it has some advantages: the
optimal solution dk(λk) = arg min

d∈Rn

{
m(xk ; d) + 1

2λk
||d ||2

}
is unique and

expressible. (But is this necessary?)
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LP Bundle Method for Convex Nonsmooth Optimization

In the following reference,

Linderoth, Jeff and Wright, Stephen.
Decomposition Algorithms for Stochastic Programming on a Computational Grid.
Computational Optimization and Applications, 24(2-3):207–250, 2003.
a special bundle trust-region method for a two-stage stochastic linear programming
problem, with linear subproblem (LP) was proposed. We generalized this method so
that it can solve any convex unconstrained optimization problems. Replace the QP in
original bundle method with the following LP.

min
x∈Rn

m(x) = max
i∈I
{f (yi ) + 〈si , x − yi 〉}

subject to ||x − x̄ ||∞ ≤ ∆,
(3)

where x̄ is the current best candidate for a minimizer of f and ∆ is the trust region
radius. The optimal solution is not necessarily unique, often on a line or in the corner
of the box trust region. Instead of line search we use trust region method.



Algorithm - LP Bundle Convex Case

Solve the linear programming subproblem and obtain an optimal solution xkl ;

if f (xk)−mk
l (xkl) ≤ (1 + |f (xk)|)εtol then

STOP
end

if ρkl = f (xk )−f (xkl )

f (xk )−mk
l (xkl )

≥ η1 then

xk+1 = xkl ;
update trust region;
k = k + 1, continue to next major iteration

else

add the cutting plane f (xkl ) + skl
T

(x − xkl ) to the model mk
l+1;

update trust region;
set l = l + 1 and continue to next minor iteration

end



Updating trust region

Let xkl be inner iteration points. The following is trust region updating procedure.
Define

ρkl =
f (xk)− f (xkl)

f (xk)−mk
l (xkl)

(2)

if ρkl > η3 and ‖xkl − xk‖∞ = ∆k
l then

∆k+1
1 = min(2∆k

l ,∆max)
else if ρkl < −

1
min(1,∆k

l )
then

∆k
l+1 = 1

min(−min(1,∆k
l )ρkl ,4)

∆k
l ;

else
∆k

l+1 = ∆k
l

end

end



Convergence for convex case

1 Prove model reduction ≥ A · B, where A ≈ the subgradient with minimum norm,
B ≈ trust region radius, (A · B ≈ directional derivative);

2 prove trust region radius ∆ is bounded below;

3 prove model reduction decreases to 0;

4 find a contradiction with A decreases to 0 but x∗ is not an optimal solution.

Let f ∗ be the minimum value and P(·) is the projection onto the optimal solution set.
From the subgradient inequality one can get

f (xk)− f (P(x)) ≤ sT (xk − P(x)) ≤ ||s||1||xk − P(x)||∞, ∀ x , ∀ s ∈ ∂f (xk).

Hence f (xk )−f ∗
||xk−P(xk )||∞ ≤ ||s||1, ∀ s ∈ ∂f (xk). Observe the quantity f (xk )−f ∗

||xk−P(xk )||∞ is an

underestimate of the minimal norm of subgradient ||g(xk)||1 = min
g∈∂f (xk )

||g ||1.
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Lemma For all xkl generated by algorithm 2 such that xk is not a minimizer of f , the
model reduction satisfies

mk
l (xk)−mk

l (xkl) ≥ [f (xk)− f ∗] min

(
∆k

l

||xk − P(xk)||∞
, 1

)
, (4)

Lemma The trust region radius ∆k
l in the previous algorithm satisfies

∆k
l ≥

1

4
min

 min
1≤i≤k

‖x i − P(x i )‖∞, min
1≤i≤k
x i 6∈S

f (x i )− f ∗

L‖x i − P(x i )‖∞

 . (5)

Model reduction indeed decreases to 0 if there is an infinite sequence.
Theorem Suppose that εtol = 0. P(xk) is the projection of xk on the optimal solution
set.
(i) If the algorithm terminates at xkl , then xk is a minimizer of f with xk = P(xk);
(ii) if there is an infinite number of minor iterations during the kth major iteration,
then xk is a minimizer of f with xk = P(xk) and lim

l→∞
mk

l (xkl)− f (xk) = 0;

(iii) if the sequence of major iterations {xk} is infinite then lim
k→∞

||xk − P(xk)||∞ = 0.
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Nonconvex case - properties of our functions

How do we generalize this method so that it can solve nonconvex problems? It is
because of convexity that the previous algorithm can keep obtaining function
reduction. This motivates us to consider the para-convex functions.

Definition (para-convexity)

Given a point x̄ ∈ Rn and a real number ε > 0, a function f : Rn → R is para-convex
on B(x̄ , ε) with respect to a if there exists a ≥ 0 such that the function f (·) + a

2 || · ||
2

is convex on B(x̄ , ε).

Definition (prox-regularity)

A function f : Rn → R is prox-regular at x̄ for v̄ with respect to ε and a if f is finite
and locally lower semicontinuous at x̄ with v̄ ∈ ∂f (x̄), and there exist ε > 0 and a ≥ 0
such that

f (x ′) ≥ f (x) +
〈
v , x ′ − x

〉
− a

2
||x ′ − x ||2 ∀ x ′ ∈ B(x̄ , ε) (6)

when ||x − x̄ || < ε, v ∈ ∂f (x), ||v − v̄ || < ε, f (x) < f (x̄) + ε. When this holds for all
v̄ ∈ ∂f (x̄), f is said to be prox-regular at x̄ .
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Motivation for nonconvex case

Assumption 1 The objective function f is locally Lipschitz continuous and bounded
below; given x0 ∈ Rn f is prox-regular on bounded level set levx0f .

Proposition (Eberhard 2001) If a function f : Rn → R is locally Lipschitz continuous
and prox-regular at x̄ then there exist ε and a such that f is para-convex on B(x̄ , ε)
with respect to a.
The proximal point mapping

x 7→ Pa (x) := arg min
y

{
f (y) +

a

2
‖y − x‖2

}
(7)

satisfies if x = Pa(x) then 0 ∈ ∂f (x) for suitable a. Our goal is to find the global
minimizer of

g(y) := g(y ; x , a) : y 7→ f (y) +
a

2
||y − x ||2 (8)

i.e. minimize a sequence of functions {g(y ; xn, an)} such that
lim
n→∞
‖xn − Pan(xn)‖∞ = 0.
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Motivation

Consider
g(y) := g(y ; x , a) : y 7→ f (y) +

a

2
||y − x ||2 (9)

with x and a as parameters.

• If f is para-convex, then according to Definition 1, g(y) is convex on some
neighborhood Bb(x).

• Clearly, for different x and b, to make g(y) convex with respect to y , there exists
a threshold for the value of a.

• Suppose we have some sequences xk → x ′, ak → a′, and bk → b′ such that
g(y ; xk , ak) is convex with respect to y on Bbk (xk) for all k . Then we can use a
cutting-planes model for g(y ; xk , ak) with box trust region to generate descent.

In order to find the global minimizer of g(y ; x , a) we want to show that it is
convexifiable at least on levx0f .



Validity of convexification

Theorem
Suppose f is prox-regular and locally Lipschitz on a bounded level set levx0f with int
levx0f 6= ∅. Let g (y ; x , a) be defined in (9) with a ≥ 0. There exists an ath such that
g(y ; x , a) is the restriction to levx0f of a convex function H(y ; x , a) for a ≥ ath and for
any x ∈ Rn.

Then we can define P(x , g(y ; xk , ak)) as the projection of x ∈ Bbk (xk) onto the
optimal solution set of g(y ; xk , ak) over the neighbourhood Bbk (xk). If we can show
||xk − P(xk , g(y ; xk , ak))||∞ → 0 when k →∞, then we get x ′ = P(x ′, g(y ; x ′, a′)).
That is, x ′ is an optimal solution of g(y ; x ′, a′) over Bb′(x

′).



On-the-fly convexification

In 2010 Hare and Sagastizábal proposed redistributed bundle method with an
on-the-fly convexification technique (still with QP and line search).

What is the
necessary condition for a function to be convex? If f is convex then

f (x) = sup
{
f (y) + sT (x − y)|y ∈ Rn, s ∈ ∂f (y)

}
.

The linearization error of any cutting plane at x̄

ẽi := f (x̄)− [f (yi ) + 〈si , x̄ − yi 〉]. (10)

should be positive unless x̄ is minimizer. We are minimizing g(x ; x̄ , a) so the
linearization error of its cutting plane at x̄

Ei := f (x̄)− [f (yi ) +
a

2
‖yi − x̄‖+ 〈si + a(yi − x̄), x̄ − yi 〉] (11)

should be positive. This can be done by manually manipulating a when some
linearization errors at such points are negative.
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On-The-Fly convexification

For example, to make sure all the current cutting planes are below the graph of g at x̄ ,
we can set Ei ≥ 0 for all i ∈ I . Suppose x̄ , yi , si for i ∈ I are given and a is not fixed.
Then we can deduce an inequality of a:

a ≥ max
i∈I

{
f (yi )− f (x̄) + 〈si , x̄ − yi 〉

1
2 ||yi − x̄ ||2

}
=: amin. (12)

Note that amin is dependent on the prox-center x̄ and the cutting-plane index set I .

We keep adding new cutting planes and updating amin. We make sure the used a in
the LP is not less than amin.
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Model problem

We solve the linear subproblem

min
x∈Rn

m(x ; x̄ , a, I ) := max{cutting planes of g(x ; x̄ , a)}

subject to ‖x − x̄‖∞ ≤ ∆
(13)

which is equivalent to the following problem

min
(x ,z)∈Rn+1

z (14a)

subject to f (yi ) +
a

2
‖yi − x̄‖2 + 〈si + a(yi − x̄), x − yi 〉 ≤ z , i ∈ I , (14b)

‖x − x̄‖∞ ≤ ∆. (14c)



Nonmonotone trust region method

We relax the rule for accepting major iteration points to allow f (xk+1) > f (xk).
Compute the largest index m(k) such that

f (xm(k)) = max
i=max{k−p,0},··· ,k

f (x i ). (15)

ρ̂kl =
f (xm(k))− f (xkl)

k∑
i=m(k)

f (x i )− z i ,li

, ρkl =
f (xk)− f (xkl)

f (xk)− zkl
, (16)

ρ̄kl = max{ρkl , ρ̂kl }. (17)

We replace the ρkl in previous version with ρ̄kl and then follow the same trust region
update scheme as before.



The algorithm for nonconvex problems

Solve the LP (14) and obtain an optimal solution (xkl , zkl);

if f (xk)− zkl ≤ (1 + |f (xk)|)εtol then
STOP; xk is an approximate stationary point

end

if ρ̄kl ≥ η1 then
declare a serious step; xk+1 ← xkl ;
update trust region radius (same as in convex case);
check Ei and update amin;
k = k + 1, continue to next major iteration

else
update trust region radius;
check Ei and update amin;

set xkl as a new auxiliary point yi and add the cutting-plane function to the model
mk

l+1;

set l = l + 1 and continue to next minor iteration;

end



Convergence of the algorithm

1 Prove model reduction decreases to 0;

2 prove model reduction ≥ A · B, where A ≈ the subgradient with minimum norm,
B ≈ trust region radius, (A · B ≈ directional derivative);

3 prove trust region radius ∆ is bounded below;

4 find a contradiction with A decreases to 0 but x∗ is not an optimal solution.

The orders are changed; 2 requires convexity and 3 requires 2.
Lemma The model reduction of LP Bundle Nonconvex converges to 0. Specifically,
(i) if in iteration k there is an infinite sequence of minor iterations then
lim
l→∞

[mk
l (xk)−mk

l (xkl)] = 0; (ii) if the sequence of major iteration points {xk} is

infinite then
lim
k→∞

[mk
lk

(xk)−mk
lk

(xk+1)] = 0. (18)

where lk is the last minor iteration in k-th major iteration so that xk+1 = xklk . Note
this lemma should be slightly changed in nonmonotone version.
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Convergence assumption

A major iterate occurs when we get sufficient descent at the lk minor iteration and
then we place xk+1 = xklk . If don’t distinguishes these we can place n ≡ {k , l}

Lemma
If the objective function f (x) satisfies Assumption 1, then there exists n̄ > 1 such that
the sequence {an} stabilizes:

an = an̄, ∀ n ≥ n̄.

Assumption 2 There exists a certain iteration ñ = (k̄, l̄), where the actual value of
parameter a used in subproblem (14) is updated such that añ ≥ ath and the algorithm
does not stop before reaching such iteration ñ.

This means g(x ; xk , a) is the restriction of a convex function H(x ; xk , a) to the whole
level set levx0f for a ≥ ath and for any xk ∈ Rn.
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Convergence

Lemma Suppose Assumption 2 holds true. Then for all (k , l) after (k̄, l̄) we have
akl ≡ añ and Pakl

(xk) is well defined and single valued; further more, if xk 6= Pakl
(xk),

then the model reduction satisfies

mk
l (xk)−mk

l (xkl) ≥
[
f (xk)− g

(
Pakl

(xk); xk , akl

)]
min

(
∆k

l

‖xk − Pakl
(xk)‖∞

, 1

)
.

Lemma Suppose Assumption 2 holds true. Then for all (k , l) after (k̄, l̄), ∆k
l satisfies

∆k
l ≥ α1 min

{
min

k̄≤i≤k
‖x i−Pañ(x i )‖∞, min

k̄≤i≤k
x i 6=P

añ
(x i )

f (x i )− g
(
Pañ(x i ); x i , añ

)
L̄‖x i − Pañ(x i )‖∞

}
, or ∆k

l ≥ ∆k̄
l̄
.

Theorem Let Assumption 2 hold true and εtol = 0. Let iteration (k̄ , l̄) correspond to ñ
in sequences and (k , l) be not before (k̄ , l̄).
(i) If the algorithm terminates at xkl , then xk = Pañ(xk);
(ii) if there is an infinite number of minor iterations after the kth major iteration, then
xk = Pañ(xk);
(iii) if the sequence of major iterations {xk} is infinite, then
limk≥k̄, k→∞ ||xk − Pañ(xk)||∞ = 0.



Preliminary numerical results

Comparison of performance on standard testing problems with the splitting bundle
method appeared in 2013 shows that LP bundle method is comparable with QP bundle
method.

No. Problem f opt f*(LPB) fn(LPB) f*(ncvx) fn(ncvx)

2 Crescent 0 5.14E-08 29 7.55E-06 27
3 CB2 1.9522245 1.952225451 17 1.9522246 20
4 CB3 2 2.000000000 4 2.0000000 19
5 DEM -3 -3.000000000 9 -3.000000000 10
6 QL 7.2 7.200000668 18 7.2000001 21
7 LQ -1.4142136 -1.41421274 19 -1.4142136 8
8 Mifflin1 -1 -0.999999683 29 -0.9999839 99
9 Mifflin2 -1 -1.000000000 21 -0.9999999 10



Comparison with NCVX

No. Problem f opt f*(LPB) fn(LPB) f*(ncvx) fn(ncvx)

10 Wolfe -8 -8.000000000 6 -7.9999999 26
11 Rosen -44 -43.99998585 55 -44.000000000 36
12 Shor 22.60016 22.60018019 56 22.600212 48
13 Colville 1 -32.3487 -32.34867809 43 –32.348678 51
14 HS78 -2.9197 -2.918896332 191
15 El-Attar 0.5598131 0.55981318 95 0.55981572 287
16 Maxquad -0.84141 -0.841407525 223 -0.8414077 61
17 Gill 9.7857721 9.785976382 185 9.7860516 253
18 Steiner 2 16.703838 16.70384921 107 16.703839 173
19 Maxq 0 1.94176E-07 342 2.77E-05 324
20 Maxl 0 0.000000000 216 3.40E-07 22
22 Goffin 0 0.000000000 52 6.06E-08 57
23 MXHILB 0 1.53885E-06 18 2.936E -07 13
24 L1HILB 0 0.000000000 3 8.47E-07 33



Discussion

• We generalized a special bundle trust region method so that it can solve generic
convex problems.

• Under convexification we extended the method by minimizing a sequence of
locally convex functions and showed that the iteration sequence converges to a
fixed point of the proximal point mapping.

• We think this fixed point is already a local minimizer of the objective function,
instead of a stationary point, if the convexification is successful. But we are yet to
prove it.

• When the parameter a is too big the function g(x ; xk , a) is too steep and the real
reduction of f can be very small; in the next stage of this project, we would like to
allow a to be decreased in the numerical experiments.

Thank you!
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