Turnpike theorems for convex problems with undiscounted integral functionals

Musa Mammadov

University of Ballarat, Victoria, Australia

m.mammadov@ballarat.edu.au

- Turnpike theory
- Continuous time systems
	- Undiscounted integral functionals
	- Convex problems
- Turnpike Theorems

Turnpike Theory

Optimal control problem:

- System: $x_{t+1} \in a(x_t), \t t = 0, 1, 2, \cdots$.
- Functional Maximize: $\sum_{t=0}^{T} \mathbf{u}$ where $\mathbf{u} = u(x_t)$ or $\mathbf{u} = u(x_t, x_{t+1})$.

Turnpike property describes the "structure/behaviour" of optimal solutions when $T \to \infty$

• ∃ "turnpike set/point" that attracts all opt. solutions

- J.V. Neumann, 1932-1945 first result obtained
	- 1932 presented at a math.seminar at Princeton (D.Gale)
	- 1937 published in Vienna
	- 1945 translated into English
- P.A. Samuelson, 1948-1949 Interpretation of Neumann's result
- 1958 the term Turnpike was introduced in
	- R. Dorfman, P.A. Samuelson and R.M. Solow, Linear Programming and Economic Analysis, 1958 (Chapter 12)
- A.M. Rubinov, 1973 Classification of the turnpike property (linear systems - Neumann-Gale model)
	- V.L. Makarov and A.M. Rubinov, Mathematical theory of economic dynamics and equilibria, 1973 (Russian)
	- translated into English, 1977
- L. McKenzie, 1976 Nonlinear systems (bounded trajectories)
	- L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems

($graph\ a$ is convex, u is strongly concave)

Continuous time systems

System: $\dot{x} \in a(x)$

Functional: Utility fun. - $u(t) = u(x(t))$ or $u(x(t), \dot{x}(t))$

- 1. Discounted integral: $\int_0^\infty \mathbf{u}(\mathbf{t}) e^{-rt} dt$
- 2. Undiscounted integral: $\int_0^T \mathbf{u(t)} \ dt$
- 3. Terminal: $\liminf_{t\to\infty} u(t)$

Main focus: Convex Problems

- $graph\ a = \{(x, y): x \in \Omega, y \in a(x)\} \Rightarrow$ is convex;
- $u \Rightarrow$ is strongly concave.

Some existing approaches

- Jose A. Scheinkman (\geq 1976) in collaboration with W.A. Brock, A Araujo etc (Maximum Principle)
- R.T. Rockafellar (1973, 1976, 2009)
- D.E.Gusev and V.A. Yakubovich (> 1973) (Maximum Principle)
- A.I.Panasyuk and V.I.Panasyuk (applications in engineering)
- D.A.Carlson, A.B.Haurie and A.Leizarowitz (book 1991)
- M.Marena and L.Montrucchio
- A.J. Zaslavski (book 2005)

Recent developments

- Long run average problem (V.Gaitsgory, 2006) $\lim_{T\to\infty}\frac{1}{T}$ $\frac{1}{T} \int_0^T u(x(t)) dt$
- Markov Games (V.Kolokoltsov at all, 2013)
- Model predictive control (T.Damm, L.Grüne et all 2012-2014) (discrete systems)
- Time-delay systems (A.Ivanov and M.Mammadov, > 2010)
- Weak stability:
	- Statistical convergence (S.Pehlivan and M.Mammadov, 2000)
	- A-Statistical convergence (P.Das, S.Dutta et all, 2014)
	- Ideal convergence (M.Mammadov and P.Szuca, 2014)

My target: to develop a complete theory for undiscounted and terminal functionals by considering

- non-convex problems
- convex problems

Today's talk: convex problems with undiscounted functionals

Most related approach: D.A.Carlson, A.B.Haurie and A.Leizarowitz (book - 1991)

- Optimality: Overtaking optimal solutions on $[0, \infty);$
- The convex case still uses some restrictive assumptions.

Turnpike Theorems

Problem (P):

System: $\dot{x} \in a(x), x(0) = x^0,$

Maximize: $J_T(x(\cdot)) = \int_0^T u(x(t)) dt$

- \bullet $a: \Omega \H \searrow R^n$ has compact images, is continuous in the Hausdorff metric
- $\bullet \quad u : \Omega \rightarrow R^1$ is continuous
- $X_T \neq \emptyset$ denotes the set of trajectories on the interval $[0, T]$
- Ω is bounded and $x(t) \in \text{int }\Omega$, $\forall t \in [0, T], x(\cdot) \in X_T$, $T > 0$
- $M \triangleq \{x \in \Omega, 0 \in a(x)\}\$ is the set of stationary points
- $x^* \in M$ is optimal stationary point if $u(x^*) = \max_{x \in M} u(x)$
- Given $T > 0$, trajectory $x(\cdot)$ is called
	- optimal if $J_T(x(\cdot)) = J_T^*$ $T^* \triangleq \sup J_T(x(\cdot))$
	- $-$ ξ−optimal if $J_T(x(·)) \geq J_T^*$ ζ^* - ξ ; where $\xi \geq 0$.

Main Assumptions

A1 (Exist. "good" sol-s): $\exists b < +\infty$, for every $T > 0$ $\exists x(\cdot) \in X_T$: $J_T(x(\cdot)) \geq u^*T-b.$

A2 (Convex Problem):

- $graph a$ is convex, compact
- \bullet u is concave (not necessarily strictly)
- $\forall x_1, x_2 \in \Omega$, $\alpha \in (0,1)$, one of the following holds:

 $u(\alpha\,x_1 + (1 - \alpha)\,x_2) > \alpha\,u(x_1) + (1 - \alpha)\,u(x_2);$

 $\mathrm{int}\; a(\alpha\,x_1 + (1 - \alpha)\,x_2) \;\supset\; \alpha\,a(x_1) + (1 - \alpha)\,a(x_2).$

- **A3:** There exists $x' \in \Omega$ such that $u(x') > u^*$.
- **A4:** There exists $\tilde{x} \in M$ such that $0 \in \text{int } a(\tilde{x})$.

Theorem 3.1: Assume that Assumptions **A1-A4** hold. Then there exists a unique optimal stationary point x^* and

(1) - Upper bound for $J_T(x(\cdot))$: there exists $C < +\infty$ such that

$$
\int\limits_0^T u(x(t))\,dt\ \leq\ u^*\,T+C
$$

for all $T > 0$ and for all trajectories $x(\cdot) \in X_T$;

(2) - Turnpike property: (given any $\xi \ge 0$): for every $\varepsilon > 0$, there exists K_{ε} < $+\infty$ s.t.

$$
\operatorname{meas}\nolimits\{t\in[0,T]:||x(t)-x^*||\geq\varepsilon\} \leq K_{\varepsilon}
$$

for all $T > 0$ and for all ξ -optimal trajectories $x(\cdot) \in X_T$;

(3): if $x(\cdot)$ is an optimal trajectory and $x(t_1) = x(t_2) = x^*$, then

$$
x(t) = x^*, \quad \forall t \in [t_1, t_2].
$$

Two special cases.

• Utility function u is strictly concave:

A3 can be eliminated: $\exists x' \in \Omega$ such that $u(x') > u^*$.

Theorem 3.2: Assume that function u is strictly concave and Assumptions A1, A2, A4 hold. Then there exists a unique optimal stationary point x^* and all the assertions $(1)-(3)$ of Theorem [3.1](#page-11-0) are valid.

• Mapping a is strictly convex:

A4 can be eliminated: $\exists \tilde{x} \in M$ such that $0 \in \text{int } a(\tilde{x})$

Theorem 3.3: Assume that mapping α is strictly convex, Assumptions A1, A2, A3 hold. Then there exists a unique optimal stationary point x^* and the assertions (2) and (3) of Theorem [3.1](#page-11-0) are valid.

THANK YOU