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Turnpike Theory

Optimal control problem:

• System: xt+1 ∈ a(xt), t = 0, 1, 2, · · · .

• Functional Maximize:
∑T

t=0 u

where u = u(xt) or u = u(xt, xt+1).

Turnpike property describes the “structure/behaviour”

of optimal solutions when T →∞

• ∃ “turnpike set/point” that attracts all opt. solutions
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• J.V. Neumann, 1932-1945 - first result obtained

– 1932 - presented at a math.seminar at Princeton

(D.Gale)

– 1937 - published in Vienna

– 1945 - translated into English

• P.A. Samuelson, 1948-1949 - Interpretation of

Neumann’s result

• 1958 - the term Turnpike was introduced in

– R. Dorfman, P.A. Samuelson and R.M. Solow, Linear

Programming and Economic Analysis, 1958 (Chapter 12)
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• A.M. Rubinov, 1973 - Classification of the turnpike

property (linear systems - Neumann-Gale model)

– V.L. Makarov and A.M. Rubinov, Mathematical theory

of economic dynamics and equilibria, 1973 (Russian)

– translated into English, 1977

• L. McKenzie, 1976 - Nonlinear systems (bounded

trajectories)

– L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems

( graph a is convex, u is strongly concave)
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Continuous time systems

System: ẋ ∈ a(x)

Functional: Utility fun. - u(t) = u(x(t)) or u(x(t), ẋ(t))

1. Discounted integral:
∫∞

0
u(t) e−rtdt

2. Undiscounted integral:
∫ T

0
u(t) dt

3. Terminal: lim inft→∞ u(t)

Main focus: Convex Problems

• graph a = {(x, y) : x ∈ Ω, y ∈ a(x)} ⇒ is convex;

• u ⇒ is strongly concave.
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Some existing approaches

• Jose A. Scheinkman (≥ 1976) in collaboration with W.A.

Brock, A Araujo etc (Maximum Principle)

• R.T. Rockafellar (1973, 1976, 2009)

• D.E.Gusev and V.A.Yakubovich (≥ 1973) (Maximum

Principle)

• A.I.Panasyuk and V.I.Panasyuk (applications in engineering)

• D.A.Carlson, A.B.Haurie and A.Leizarowitz (book - 1991)

• M.Marena and L.Montrucchio

• A.J. Zaslavski (book - 2005)
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Recent developments

• Long run average problem (V.Gaitsgory, 2006)

limT→∞
1
T

∫ T

0
u(x(t))dt

• Markov Games (V.Kolokoltsov at all, 2013)

• Model predictive control (T.Damm, L.Grüne et all

2012-2014) (discrete systems)

• Time-delay systems (A.Ivanov and M.Mammadov, ≥ 2010)

• Weak stability:

– Statistical convergence (S.Pehlivan and M.Mammadov,

2000)

– A-Statistical convergence (P.Das, S.Dutta et all, 2014)

– Ideal convergence (M.Mammadov and P.Szuca, 2014)
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My target: to develop a complete theory for undiscounted and

terminal functionals by considering

• non-convex problems

• convex problems

Today’s talk: convex problems with undiscounted functionals

Most related approach: D.A.Carlson, A.B.Haurie and

A.Leizarowitz (book - 1991)

• Optimality: Overtaking optimal solutions on [0,∞);

• The convex case still uses some restrictive assumptions.
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Turnpike Theorems

Problem (P):

System: ẋ ∈ a(x), x(0) = x0,

Maximize: JT (x(·)) =
∫ T

0
u(x(t)) dt

• a : Ω↗↘R
n has compact images, is continuous in the Hausdorff metric

• u : Ω→ R1 is continuous

• XT 6= ∅ denotes the set of trajectories on the interval [0, T ]

• Ω is bounded and x(t) ∈ int Ω, ∀t ∈ [0, T ], x(·) ∈ XT , T > 0

• M , {x ∈ Ω, 0 ∈ a(x)} - is the set of stationary points

• x∗ ∈M is optimal stationary point if u(x∗) = maxx∈M u(x)

• Given T > 0, trajectory x(·) is called

– optimal if JT (x(·)) = J∗T , sup JT (x(·))

– ξ−optimal if JT (x(·)) ≥ J∗T − ξ; where ξ ≥ 0.
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Main Assumptions

A1 (Exist. “good” sol-s): ∃ b < +∞, for every T > 0 ∃ x(·) ∈ XT :

JT (x(·)) ≥ u∗T − b.

A2 (Convex Problem):

• graph a is convex, compact

• u is concave (not necessarily strictly)

• ∀ x1, x2 ∈ Ω, α ∈ (0, 1), one of the following holds:

u(αx1 + (1− α)x2) > αu(x1) + (1− α)u(x2);

int a(αx1 + (1− α)x2) ⊃ αa(x1) + (1− α) a(x2).

A3: There exists x′ ∈ Ω such that u(x′) > u∗.

A4: There exists x̃ ∈M such that 0 ∈ int a(x̃).
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Theorem 3.1: Assume that Assumptions A1-A4 hold. Then

there exists a unique optimal stationary point x∗ and

(1) - Upper bound for JT (x(·)): there exists C < +∞ such that

T∫
0

u(x(t)) dt ≤ u∗ T + C

for all T > 0 and for all trajectories x(·) ∈ XT ;

(2) - Turnpike property: (given any ξ ≥ 0): for every ε > 0,

there exists Kε < +∞ s.t.

meas{t ∈ [0, T ] : ||x(t)− x∗|| ≥ ε} ≤ Kε

for all T > 0 and for all ξ-optimal trajectories x(·) ∈ XT ;

(3): if x(·) is an optimal trajectory and x(t1) = x(t2) = x∗, then

x(t) = x∗, ∀t ∈ [t1, t2].
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Two special cases.

• Utility function u is strictly concave:

A3 can be eliminated: ∃ x′ ∈ Ω such that u(x′) > u∗.

Theorem 3.2: Assume that function u is strictly concave

and Assumptions A1, A2, A4 hold. Then there exists a

unique optimal stationary point x∗ and all the assertions

(1)-(3) of Theorem 3.1 are valid.

• Mapping a is strictly convex:

A4 can be eliminated: ∃ x̃ ∈M such that 0 ∈ int a(x̃)

Theorem 3.3: Assume that mapping a is strictly convex,

Assumptions A1, A2, A3 hold. Then there exists a unique

optimal stationary point x∗ and the assertions (2) and (3)

of Theorem 3.1 are valid.
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