Turnpike theorems for convex problems with undiscounted integral functionals

Musa Mammadov

University of Ballarat, Victoria, Australia

m.mammadov@ballarat.edu.au

- Turnpike theory
- Continuous time systems
 - Undiscounted integral functionals
 - Convex problems
- Turnpike Theorems

Turnpike Theory

Optimal control problem:

- System: $x_{t+1} \in a(x_t), t = 0, 1, 2, \cdots$
- Functional Maximize: $\sum_{t=0}^{T} \mathbf{u}$ where $\mathbf{u} = u(x_t)$ or $\mathbf{u} = u(x_t, x_{t+1})$.

Turnpike property describes the "structure/behaviour" of optimal solutions when $T \rightarrow \infty$

• ∃ "turnpike set/point" that attracts all opt. solutions

- J.V. Neumann, 1932-1945 first result obtained
 - 1932 presented at a math.seminar at Princeton (D.Gale)
 - 1937 published in Vienna
 - 1945 translated into English
- P.A. Samuelson, 1948-1949 Interpretation of Neumann's result
- 1958 the term Turnpike was introduced in
 - *R. Dorfman, P.A. Samuelson and R.M. Solow,* Linear
 Programming and Economic Analysis, 1958 (Chapter 12)

- A.M. Rubinov, 1973 Classification of the turnpike property (linear systems - Neumann-Gale model)
 - V.L. Makarov and A.M. Rubinov, Mathematical theory of economic dynamics and equilibria, 1973 (Russian)
 - translated into English, 1977
- L. McKenzie, 1976 Nonlinear systems (bounded trajectories)
 - L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems (graph a is convex, u is strongly concave)

Continuous time systems

System: $\dot{x} \in a(x)$

Functional: Utility fun. - $\mathbf{u}(\mathbf{t}) = u(x(t))$ or $u(x(t), \dot{x}(t))$

- 1. Discounted integral: $\int_0^\infty \mathbf{u}(\mathbf{t}) \ e^{-rt} dt$
- 2. Undiscounted integral: $\int_0^T \mathbf{u}(\mathbf{t}) dt$
- 3. Terminal: $\liminf_{t\to\infty} \mathbf{u}(\mathbf{t})$

Main focus: Convex Problems

- $graph a = \{(x, y) : x \in \Omega, y \in a(x)\} \Rightarrow$ is convex;
- $u \Rightarrow$ is strongly concave.

Some existing approaches

- Jose A. Scheinkman (≥ 1976) in collaboration with W.A. Brock, A Araujo etc (Maximum Principle)
- R.T. Rockafellar (1973, 1976, 2009)
- D.E.Gusev and V.A.Yakubovich (≥ 1973) (Maximum Principle)
- A.I.Panasyuk and V.I.Panasyuk (applications in engineering)
- D.A.Carlson, A.B.Haurie and A.Leizarowitz (book 1991)
- M.Marena and L.Montrucchio
- A.J. Zaslavski (book 2005)

Recent developments

- Long run average problem (V.Gaitsgory, 2006) $\lim_{T\to\infty} \frac{1}{T} \int_0^T u(x(t)) dt$
- Markov Games (V.Kolokoltsov at all, 2013)
- Model predictive control (T.Damm, L.Grüne et all 2012-2014) (discrete systems)
- Time-delay systems (A.Ivanov and M.Mammadov, ≥ 2010)
- Weak stability:
 - Statistical convergence (S.Pehlivan and M.Mammadov, 2000)
 - A-Statistical convergence (P.Das, S.Dutta et all, 2014)
 - Ideal convergence (M.Mammadov and P.Szuca, 2014)

My target: to develop a complete theory for undiscounted and terminal functionals by considering

- non-convex problems
- convex problems

Today's talk: convex problems with undiscounted functionals

Most related approach: D.A.Carlson, A.B.Haurie and A.Leizarowitz (book - 1991)

- Optimality: Overtaking optimal solutions on $[0,\infty)$;
- The convex case still uses some restrictive assumptions.

Turnpike Theorems

Problem (P):

- System: $\dot{x} \in a(x), \quad x(0) = x^0,$
- Maximize: $J_T(x(\cdot)) = \int_0^T u(x(t)) dt$
- $a: \Omega \swarrow R^n$ has compact images, is continuous in the Hausdorff metric
- $u: \Omega \to R^1$ is continuous
- $X_T \neq \emptyset$ denotes the set of trajectories on the interval [0, T]
- Ω is bounded and $x(t) \in int \Omega$, $\forall t \in [0, T], x(\cdot) \in X_T, T > 0$
- $M \triangleq \{x \in \Omega, 0 \in a(x)\}$ is the set of stationary points
- $x^* \in M$ is optimal stationary point if $u(x^*) = \max_{x \in M} u(x)$
- Given T > 0, trajectory $x(\cdot)$ is called
 - optimal if $J_T(x(\cdot)) = J_T^* \triangleq \sup J_T(x(\cdot))$
 - ξ -optimal if $J_T(x(\cdot)) \ge J_T^* \xi$; where $\xi \ge 0$.

Turnpike Theorems

Main Assumptions

A1 (Exist. "good" sol-s): $\exists b < +\infty$, for every T > 0 $\exists x(\cdot) \in X_T :$ $J_T(x(\cdot)) \geq u^*T - b.$

A2 (Convex Problem):

- grapha is convex, compact
- *u* is concave (not necessarily strictly)
- $\forall x_1, x_2 \in \Omega$, $\alpha \in (0, 1)$, one of the following holds:

 $u(\alpha x_1 + (1 - \alpha) x_2) > \alpha u(x_1) + (1 - \alpha) u(x_2);$

int $a(\alpha x_1 + (1 - \alpha) x_2) \supset \alpha a(x_1) + (1 - \alpha) a(x_2)$.

- **A3:** There exists $x' \in \Omega$ such that $u(x') > u^*$.
- **A4:** There exists $\tilde{x} \in M$ such that $0 \in \text{int } a(\tilde{x})$.

Theorem 3.1: Assume that Assumptions A1-A4 hold. Then there exists a unique optimal stationary point x^* and

(1) - Upper bound for $J_T(x(\cdot))$: there exists $C < +\infty$ such that

$$\int_{0}^{T} u(x(t)) dt \leq u^* T + C$$

for all T > 0 and for all trajectories $x(\cdot) \in X_T$;

(2) - Turnpike property: (given any $\xi \ge 0$): for every $\varepsilon > 0$, there exists $K_{\varepsilon} < +\infty$ s.t.

$$\max\{t \in [0,T]: ||x(t) - x^*|| \ge \varepsilon\} \le K_{\varepsilon}$$

for all T > 0 and for all ξ -optimal trajectories $x(\cdot) \in X_T$;

(3): if $x(\cdot)$ is an optimal trajectory and $x(t_1) = x(t_2) = x^*$, then

$$x(t)=x^*, \hspace{1em} orall t\in [t_1,t_2].$$

Two special cases.

• Utility function *u* is strictly concave:

A3 can be eliminated: $\exists x' \in \Omega$ such that $u(x') > u^*$.

Theorem 3.2: Assume that function u is strictly concave and Assumptions **A1**, **A2**, **A4** hold. Then there exists a unique optimal stationary point x^* and all the assertions (1)-(3) of Theorem 3.1 are valid.

• Mapping *a* is strictly convex:

A4 can be eliminated: $\exists \ \tilde{x} \in M$ such that $0 \in int \ a(\tilde{x})$

Theorem 3.3: Assume that mapping a is strictly convex, Assumptions **A1**, **A2**, **A3** hold. Then there exists a unique optimal stationary point x^* and the assertions (2) and (3) of Theorem 3.1 are valid.

THANK YOU