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f (x)

f (x) = max
1≤i≤m

fi (x)

System of Nonlinear Equations
fi (x) = 0, i = 1, . . . ,m,

we often do
min
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‖f̄ (x)‖

where f̄ (x) = (f1(x), . . . , fm(x))
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Structure of Optimization Algorithms

Step 1 Initial Step x0 ∈ Rn

Step 2 Termination Criteria

Step 3 Finding descent direction dk at xk

Step 4 Finding step size f (xk + αkdk) < f (xk)

Step 5 Loop xk+1 = xk + αkdk and go to step 2.

Asef Nazari Secant Method



Outline
Background

Secant Method

The Problem
Optimization Algorithms and components
Subgradient and Subdifferential

Classification of Algorithms Based on dk and αk

Directions
dk = −∇f (xk) Steepest Descent Method
dk = −H−1(xk)∇f (xk) Newton Method
dk = −B−1∇f (xk) Quasi-Newton Method

Step sizes

h(α) = f (xk + αdk)
1 exactly solve h′(α) = 0 exact line search
2 loosly solve it, inexact line serach

Trust region methods
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When the objective function is smooth

Descent direction f ′(xk , d) < 0

f ′(xk , d) = 〈∇f (xk), d〉 ≤ 0 descent direction

−∇f (xk) steepest descent direction

‖∇f (xk)‖ ≤ ε good stopping criteria (First Order Necessary
Conditions)
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Subgradient

g ∈ Rn is a subgradient of a convex function f at y if

f (x) ≥ f (y) + gT .(x − y) ∀x ∈ Dom(f )

if x < 0, g = −1

if x > 0, g = 1

if x = 0, g ∈ [−1, 1]
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Subdifferential

Set of all subgradients of f at x , ∂f (x), is called
subdifferential.

for f (x) = |x |, the subdifferential at x = 0 is ∂f (0) = [−1, 1]
For x > 0 ∂f (x) = {1}
For x < 0 ∂f (x) = {−1}
f is differentiable at x ⇐⇒ ∂f (x) = {∇f (x)}
for Lipschitz functions (Clarke)

∂f (x0) = conv{lim∇f (xi ) : xi −→ x0 ∇f (xi )exists}
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Optimality Condition

For a smooth convex function

f (x∗) = inf
x∈Dom(f )

f (x)⇐⇒ 0 = ∇f (x∗)

For a nonsmooth convex function

f (x∗) = inf
x∈Dom(f )

f (x)⇐⇒ 0 ∈ ∂f (x∗)
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Directional derivative

In Smooth Case

f ′(xk , d) = lim
λ→0+

f (xk + λd)− f (xk)

λ
= 〈∇f (xk), d〉

In nonsmooth case

f ′(xk , d) = lim
λ→0+

f (xk + λd)− f (xk)

λ
= sup

g∈∂f (xk )
〈gT , d〉
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Descent Direction

In Smooth Case, if f ′(xk , d) = 〈∇f (xk), d〉 < 0. (−∇f (xk)
steepest descent direction)

In nonsmooth case, if f ′(xk , d) < 0. It is proved that

d = −argmin
g∈∂f (xk )

‖g‖
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In Summary

Optimality condition

f (x∗) = inf
x∈Dom(f )

f (x)⇐⇒ 0 ∈ ∂f (x∗)

Directional Derivative

f ′(xk , d) = lim
λ→0+

f (xk + λd)− f (xk)

λ
= sup

g∈∂f (xk )
〈gT , d〉

Steepest Descent Direction

d = −argmin
g∈∂f (xk )

‖g‖
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Methods for nonsmooth problems

The way we treat ∂f (x) leads to different types of algorithms in
nonsmooth optimization

Subgradient method (one subgradient at each iteration)

Bundle method (a bundle of subgradients in each iteration)

Gradient Sampling method

smoothing technique
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Definition of r -secant

S1 = {g ∈ Rn : ‖g‖ = 1} the unit sphere in Rn

g ∈ S1 we define

gmax = max {|gi |, i = 1, . . . , n} .

g ∈ S1 and gj = gmax , v ∈ ∂f (x + rg)

s = s(x , g , r) ∈ Rn where

s = (s1, . . . , sn) : si = vi , i = 1, . . . , n, i 6= j

and

sj =
f (x + rg)− f (x)− r

∑n
i=1,i 6=j sigi

rgj

is called an r -secant of the function f at a point x in the
direction g .
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Facts about r -secant

If n = 1,

s =
f (x + rg)− f (x)

rg

Mean Value Theorem for r -secants

f (x + rg)− f (x) = r〈s(x , g , r), g〉

Set of all possible r -secants of the function f at the point x

Sr f (x) = {s ∈ Rn : ∃g ∈ S1 : s = s(x , g , r)}

1 compact for r > 0
2 (x , r) 7→ Sr f (x), r > 0 is closed and upper semi-continuous
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A new set

Sc
0 f (x) = conv{v ∈ Rn : ∃(g ∈ S1, rk → +0, k → +∞) :

v = lim
k→+∞

s(x , g , rk)},

For regular and semismooth function f at a point x ∈ Rn:

∂f (x) = Sc
0 f (x).
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Optimality condition

Let x ∈ Rn be a local minimizer of the function f and it is
directionally differentiable at x . Then

0 ∈ Sc
0 f (x).

x ∈ Rn is an r -stationary point for a function f on Rn if
0 ∈ Sc

r f (x).

x ∈ Rn is an (r , δ)-stationary point for a function f on Rn if
0 ∈ Sc

r f (x) + Bδ where

Bδ = {v ∈ Rn : ‖v‖ ≤ δ}.
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Descent Direction

If x ∈ Rn is not an r -stationary point of a function f on Rn,

0 6∈ Sc
r f (x).

we can compute a descent direction using the set Sc
r f (x)

Let x ∈ Rn and for given r > 0

min{‖v‖ : v ∈ Sc
r f (x)} = ‖v0‖ > 0.

Then for g0 = −‖v0‖−1v0

f (x + rg0)− f (x) ≤ −r‖v0‖.

minimize ‖v‖2

subjectto v ∈ Sc
r f (x).
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An algorithm for descent direction (Alg1)

step 1. compute an r -secant s1 = s(x , g1, r) . Set W 1(x) = {s1} and
k = 1.

step 2. ‖wk‖2 = min{‖w‖2 : w ∈ coW k(x)}. If

‖wk‖ ≤ δ,

then stop. Otherwise go to Step 3.

step 3. gk+1 = −‖wk‖−1wk .

step 4. f (x + rgk+1)− f (x) ≤ −cr‖wk‖, then stop. Otherwise go to
Step 5.

step 5. sk+1 = s(x , gk+1, r) with respect to the direction gk+1,
construct the set W k+1(x) = co

{
W k(x)

⋃
{sk+1}

}
, set

k = k + 1 and go to Step 2.
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The secant method (r , δ)-stationary point(Alg 2)

step 1. x0 ∈ Rn and set k = 0.

step 2. Apply Alg 1 at x = xk

Either ‖vk‖ ≤ δ or for the search direction gk = −‖vk‖−1vk

step 3. If ‖vk‖ ≤ δ then stop. Otherwise go to Step 4.

step 4. xk+1 = xk + σkgk , where σk is defined as follows

σk = arg max
{
σ ≥ 0 : f (xk + σgk)− f (xk) ≤ −c2σ‖vk‖

}
.

Set k = k + 1 and go to Step 2.
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The secant method (Alg 3)

step 1. x0 ∈ Rn and set k = 0.

step 2. Apply Alg 2 to xk for r = rk and δ = δk . This algorithm
terminates after a finite number of iterations p > 0 and as a
result the algorithm finds (rk , δk)-stationary point xk+1.

step 3. Set k = k + 1 and go to Step 2.
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Convergence Theorem

Theorem

Assume that the function f is locally Lipschitz and the set L(x0) is
bounded for starting points x0 ∈ Rn. Then every accumulation
point of the sequence {xk} belongs to the set
X 0 = {x ∈ Rn : 0 ∈ ∂f (x)}.
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