A Secant Method for Nonsmooth Optimization

Asef Nazari

CSIRO Melbourne

CARMA Workshop on Optimization, Nonlinear Analysis, Randomness and Risk Newcastle, Australia 12 July, 2014

a mills.

→ 伊 ▶ → ヨ ▶ → ヨ ▶

 $2Q$

后

1 [Background](#page-2-0)

- **[The Problem](#page-2-0)**
- [Optimization Algorithms and components](#page-10-0)
- [Subgradient and Subdifferential](#page-14-0)

2 [Secant Method](#page-33-0)

- **o** [Definitions](#page-33-0)
- [Optimality Condition and Descent Direction](#page-44-0)
- **[The Secant Algorithm](#page-53-0)**
- [Numerical Results](#page-61-0)

 \leftarrow \Box

へのへ

[The Problem](#page-3-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

The problem

Unconstrained Optimization Problem

 $\min_{x \in R^n} f(x)$

- $f: R^n \to R^n$
- **·** Locally Lipshitz $\ddot{\mathrm{O}}$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 伊 ⊁ K 店

IN K 로) $2Q$

目

The problem

Unconstrained Optimization Problem

 $\min_{x \in R^n} f(x)$

- $f: R^n \to R^n$
- **•** Locally Lipshitz \ddot{O}
- Why just unconstrained?

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x \in Y} f(x)$

where $Y \subset R^n$.

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x \in Y} f(x)$

where $Y \subset R^n$.

• Distance function

$$
dist(x, Y) = \min_{y \in Y} ||y - x||
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

 \overline{AB} \rightarrow \overline{AB}

 Ω

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x \in Y} f(x)$

where $Y \subset R^n$.

• Distance function

$$
dist(x, Y) = \min_{y \in Y} ||y - x||
$$

• Theory of penalty function (under some conditions)

$$
\min_{x \in R^n} f(x) + \sigma \text{dist}(x, y)
$$

• $f(x) + \sigma \text{dist}(x, y)$ is a nonsmooth function

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

メロメ メ御 メメ きょ メモメ

重

 $2Q$

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x \in R^n} f(x)$ $f(x) = \max_{1 \leq i \leq m} f_i(x)$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x \in R^n} f(x)$

$$
f(x) = \max_{1 \leq i \leq m} f_i(x)
$$

• System of Nonlinear Equations $f_i(x) = 0, \quad i = 1, \ldots, m,$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x \in R^n} f(x)$

$$
f(x) = \max_{1 \leq i \leq m} f_i(x)
$$

• System of Nonlinear Equations $f_i(x) = 0, \quad i = 1, \ldots, m$ we often do $\min_{x \in R^n} \|\bar{f}(x)\|$

where
$$
\bar{f}(x) = (f_1(x), \ldots, f_m(x))
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

メロメ メ御 メメミメメミメ

つくい

Structure of Optimization Algorithms

- Step 1 Initial Step $x_0 \in R^n$
- Step 2 Termination Criteria
- Step 3 **Finding descent direction** d_k at x_k
- Step 4 **Finding step size** $f(x_k + \alpha_k d_k) < f(x_k)$
- Step 5 Loop $x_{k+1} = x_k + \alpha_k d_k$ and go to step 2.

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

- 4 E F

 $2Q$

后

Classification of Algorithms Based on d_k and α_k

Directions

- $d_k = -\nabla f(x_k)$ Steepest Descent Method
- $d_k = -H^{-1}(x_k) \nabla f(x_k)$ Newton Method
- $d_k = -B^{-1} \nabla f(x_k)$ Quasi-Newton Method

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つへへ

Classification of Algorithms Based on d_k and α_k

Directions

- $d_k = -\nabla f(x_k)$ Steepest Descent Method
- $d_k = -H^{-1}(x_k) \nabla f(x_k)$ Newton Method
- $d_k = -B^{-1} \nabla f(x_k)$ Quasi-Newton Method

Step sizes

$$
\bullet \ \ h(\alpha) = f(x_k + \alpha d_k)
$$

- **1** exactly solve $h'(\alpha) = 0$ exact line search
- **2** loosly solve it, inexact line serach
- Trust region methods

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

イロト イ母 トイラト イラト

 Ω

When the objective function is smooth

- Descent direction $f'(x_k, d) < 0$
- $f'(\mathsf{x}_k, d) = \langle \nabla f(\mathsf{x}_k), d \rangle \leq 0$ descent direction
- \bullet $-\nabla f(x_k)$ steepest descent direction
- $\|\nabla f(x_k)\| \leq \varepsilon$ good stopping criteria (First Order Necessary Conditions)

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-15-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

È

 299

Subgradient

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ト K 倒 ト K 走 ト

一(話)

重

 $2Q$

Subgradient

Basic Inequality for convex differentiable function:

$$
f(x) \geq f(y) + \nabla f(y)^T.(x - y) \quad \forall x \in Dom(f)
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subgradient

 $g \in R^n$ is a subgradient of a convex function f at y if

$$
f(x) \geq f(y) + g^T.(x - y) \quad \forall x \in Dom(f)
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subgradient

 $g \in R^n$ is a subgradient of a convex function f at y if

$$
f(x) \geq f(y) + g^T.(x - y) \quad \forall x \in Dom(f)
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subgradient

 $g \in R^n$ is a subgradient of a convex function f at y if

$$
f(x) \geq f(y) + g^T.(x - y) \quad \forall x \in Dom(f)
$$

if $x < 0$, $g = -1$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subgradient

 $g \in R^n$ is a subgradient of a convex function f at y if

$$
f(x) \geq f(y) + g^T.(x - y) \quad \forall x \in Dom(f)
$$

if
$$
x < 0
$$
, $g = -1$
if $x > 0$, $g = 1$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subgradient

 $g \in R^n$ is a subgradient of a convex function f at y if

$$
f(x) \geq f(y) + g^T.(x - y) \quad \forall x \in Dom(f)
$$

if
$$
x < 0
$$
, $g = -1$
if $x > 0$, $g = 1$
if $x = 0$, $g \in [-1, 1]$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Subdifferential

 \bullet Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

∢ロ ▶ ∢ 倒 ▶ ∢ ヨ ▶

- イヨト

 $2Q$

重

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for $f(x) = |x|$, the subdifferential at $x = 0$ is $\partial f(0) = [-1, 1]$ For $x > 0$ $\partial f(x) = \{1\}$ For $x < 0$ $\partial f(x) = \{-1\}$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

メロメ メ御 メメ ミメメ ミメ

つくい

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for $f(x) = |x|$, the subdifferential at $x = 0$ is $\partial f(0) = [-1, 1]$ For $x > 0$ $\partial f(x) = \{1\}$ For $x < 0$ $\partial f(x) = \{-1\}$
- f is differentiable at $x \iff \partial f(x) = \{\nabla f(x)\}\$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

∢ロ ▶ ∢ 倒 ▶ ∢ ヨ ▶

つくい

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for $f(x) = |x|$, the subdifferential at $x = 0$ is $\partial f(0) = [-1, 1]$ For $x > 0$ $\partial f(x) = \{1\}$ For $x < 0$ $\partial f(x) = \{-1\}$
- f is differentiable at $x \iff \partial f(x) = \{\nabla f(x)\}\$
- for Lipschitz functions (Clarke)

$$
\partial f(x_0) = conv\{ \lim \nabla f(x_i) : x_i \longrightarrow x_0 \ \nabla f(x_i) \text{ exists} \}
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Optimality Condition

• For a smooth convex function

$$
f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 = \nabla f(x^*)
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

Optimality Condition

• For a smooth convex function

$$
f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 = \nabla f(x^*)
$$

• For a nonsmooth convex function

$$
f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 \in \partial f(x^*)
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

メロメ メタメ メミメ メミメ

 \equiv

 299

Directional derivative

• In Smooth Case

$$
f'(x_k, d) = \lim_{\lambda \to 0^+} \frac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \langle \nabla f(x_k), d \rangle
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 299

Directional derivative

o In Smooth Case

$$
f'(x_k, d) = \lim_{\lambda \to 0^+} \frac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \langle \nabla f(x_k), d \rangle
$$

• In nonsmooth case

$$
f'(x_k, d) = \lim_{\lambda \to 0^+} \frac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \sup_{g \in \partial f(x_k)} \langle g^T, d \rangle
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

Descent Direction

In Smooth Case, if $f'(x_k, d) = \langle \nabla f(x_k), d \rangle < 0$. $(-\nabla f(x_k))$ steepest descent direction)

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

 $2Q$

扂

K 로)

Descent Direction

- In Smooth Case, if $f'(x_k, d) = \langle \nabla f(x_k), d \rangle < 0$. $(-\nabla f(x_k))$ steepest descent direction)
- In nonsmooth case, if $f'(x_k, d) < 0$. It is proved that

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 $2Q$

In Summary

Optimality condition

$$
f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 \in \partial f(x^*)
$$

O Directional Derivative

$$
f'(x_k, d) = \lim_{\lambda \to 0^+} \frac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \sup_{g \in \partial f(x_k)} \langle g^{\mathcal{T}}, d \rangle
$$

• Steepest Descent Direction

$$
d = -\underset{g \in \partial f(x_k)}{\text{argmin}} \|g\|
$$

[The Problem](#page-2-0) [Optimization Algorithms and components](#page-10-0) [Subgradient and Subdifferential](#page-14-0)

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

へのへ

Methods for nonsmooth problems

The way we treat $\partial f(x)$ leads to different types of algorithms in nonsmooth optimization

- Subgradient method (one subgradient at each iteration)
- Bundle method (a bundle of subgradients in each iteration)
- **Gradient Sampling method**
- smoothing technique

Definition of r-secant

 $\mathcal{S}_1 = \{g \in \mathcal{R}^n : \|g\| = 1\}$ the unit sphere in \mathcal{R}^n

メロト メタト メミト メミト

重

 $2Q$

Definition of r-secant

- $\mathcal{S}_1 = \{g \in \mathcal{R}^n : \|g\| = 1\}$ the unit sphere in \mathcal{R}^n
- $g \in S_1$ we define

$$
g^{max} = \max\{|g_i|, i=1,\ldots,n\}.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

Definition of r-secant

- $\mathcal{S}_1 = \{g \in \mathcal{R}^n : \|g\| = 1\}$ the unit sphere in \mathcal{R}^n
- $g \in S_1$ we define

$$
g^{max} = \max\{|g_i|, i=1,\ldots,n\}.
$$

•
$$
g \in S_1
$$
 and $g_j = g^{max}$, $v \in \partial f(x + rg)$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

Definition of r-secant

- $\mathcal{S}_1 = \{g \in \mathcal{R}^n : \|g\| = 1\}$ the unit sphere in \mathcal{R}^n
- $g \in S_1$ we define

$$
g^{max} = \max\{|g_i|, i=1,\ldots,n\}.
$$

\n- $$
g \in S_1
$$
 and $g_j = g^{max}$, $v \in \partial f(x + rg)$
\n- $s = s(x, g, r) \in R^n$ where
\n

$$
s = (s_1, ..., s_n) : s_i = v_i, i = 1, ..., n, i \neq j
$$

and

$$
s_j = \frac{f(x+rg)-f(x)-r\sum_{i=1, i\neq j}^n s_i g_i}{rg_j}
$$

is called an r -secant of the function f at a point x in the direction g . K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Facts about r-secant

• If
$$
n = 1
$$
,

$$
s = \frac{f(x + rg) - f(x)}{rg}
$$

メロメ メ団 メメ ミメ メモメ

重

 299

Facts about r-secant

• If
$$
n = 1
$$
,

$$
s = \frac{f(x + rg) - f(x)}{rg}
$$

• Mean Value Theorem for r-secants

$$
f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle
$$

メロメメ 御き メミメメ ミト

重

 $2Q$

Facts about r-secant

• If
$$
n = 1
$$
,

$$
s = \frac{f(x + rg) - f(x)}{rg}
$$

• Mean Value Theorem for r-secants

$$
f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle
$$

 \bullet Set of all possible *r*-secants of the function *f* at the point *x*

$$
S_r f(x) = \{s \in R^n : \exists g \in S_1 : s = s(x, g, r)\}
$$

K ロ ▶ K 御 ▶ K 舌

 $2Q$

目

∢ 重 ≯

Facts about r-secant

• If
$$
n = 1
$$
,

$$
s = \frac{f(x + rg) - f(x)}{rg}
$$

• Mean Value Theorem for r-secants

$$
f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle
$$

• Set of all possible r-secants of the function f at the point x

$$
S_r f(x) = \{s \in R^n : \exists g \in S_1 : s = s(x, g, r)\}
$$

K ロ ▶ K 御 ▶ K 舌

 $2Q$

目

三

Facts about r-secant

• If
$$
n = 1
$$
,

$$
s = \frac{f(x + rg) - f(x)}{rg}
$$

• Mean Value Theorem for r-secants

$$
f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle
$$

 \bullet Set of all possible r-secants of the function f at the point x

$$
S_r f(x) = \{s \in R^n : \exists g \in S_1 : s = s(x, g, r)\}
$$

O compact for $r > 0$ 2 $(x, r) \mapsto S_r f(x), r > 0$ is closed and upper semi-continuous

 $4.17 \times$

 \overline{AB} \overline{B} \overline{C} \overline{D}

 Ω

A new set

$$
\bullet \ \ S_0^c f(x) = conv\{v \in R^n : \exists (g \in S_1, r_k \rightarrow +0, k \rightarrow +\infty) :
$$

$$
v=\lim_{k\to+\infty}s(x,g,r_k)\},\
$$

メロメ メ都 メメ きょくきょう

重

 299

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

メロメ メ母メ メミメ メミメ

重

 $2Q$

A new set

•
$$
S_0^c f(x) = conv\{v \in R^n : \exists (g \in S_1, r_k \rightarrow +0, k \rightarrow +\infty) :
$$

$$
v=\lim_{k\to+\infty}s(x,g,r_k)\},
$$

For regular and semismooth function f at a point $x \in R^n$:

$$
\partial f(x) = S_0^c f(x).
$$

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

Optimality condition

Let $x \in R^n$ be a local minimizer of the function f and it is directionally differentiable at x. Then

 $0 \in S_0^c f(x)$.

- $x \in R^n$ is an *r*-stationary point for a function f on R^n if $0 \in S_r^c f(x)$.
- $x \in R^n$ is an (r, δ) -stationary point for a function f on R^n if $0 \in S_r^{\text{c}} f(x) + B_\delta$ where

$$
B_{\delta} = \{ v \in R^n : \|\mathbf{v}\| \leq \delta \}.
$$

Descent Direction

If $x \in R^n$ is not an *r*-stationary point of a function f on R^n ,

 $0 \notin S_r^c f(x)$.

we can compute a descent direction using the set $S_r^cf(x)$

K ロ ▶ | K 御 ▶ | K 舌

 $2Q$

 \equiv \rightarrow

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

 $2Q$

Descent Direction

If $x \in R^n$ is not an *r*-stationary point of a function f on R^n ,

$$
0\not\in S_r^cf(x).
$$

we can compute a descent direction using the set $S_r^cf(x)$ Let $x \in R^n$ and for given $r > 0$

$$
\min\{\|v\| : v \in S_r^c f(x)\} = \|v^0\| > 0.
$$

Then for $g^0 = -\|v^0\|^{-1}v^0$

$$
f(x + rg^0) - f(x) \le -r\|v^0\|.
$$

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

◀ ㅁ ▶ ◀ @ ▶ ◀ 글

 $2Q$

Descent Direction

 \bullet

If $x \in R^n$ is not an *r*-stationary point of a function f on R^n ,

$$
0\not\in S_r^cf(x).
$$

we can compute a descent direction using the set $S_r^cf(x)$ Let $x \in R^n$ and for given $r > 0$

$$
\min\{\|v\| : v \in S_r^c f(x)\} = \|v^0\| > 0.
$$

Then for $g^0 = -\|v^0\|^{-1}v^0$

$$
f(x + rg^0) - f(x) \le -r\|v^0\|.
$$

minimize $\|\mathbf{v}\|^2$ subjectto $v \in S_r^c f(x)$.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

An algorithm for descent direction (Alg1)

step $1.$ compute an r -secant $s^1 = s(x,g^1,r)$. Set $\overline{W}_1(x) = \{s^1\}$ and $k=1$.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

つくい

An algorithm for descent direction (Alg1)

step $1.$ compute an r -secant $s^1 = s(x,g^1,r)$. Set $\overline{W}_1(x) = \{s^1\}$ and $k=1$. step 2. $\|w^k\|^2 = \min\{\|w\|^2: w \in co\overline{W}_k(x)\}.$ If $\Vert w^k \Vert \leq \delta,$

then stop. Otherwise go to Step 3.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

イロメ イ部メ イヨメ イヨメー

つくい

An algorithm for descent direction (Alg1)

step $1.$ compute an r -secant $s^1 = s(x,g^1,r)$. Set $\overline{W}_1(x) = \{s^1\}$ and $k=1$. step 2. $\|w^k\|^2 = \min\{\|w\|^2: w \in co\overline{W}_k(x)\}.$ If $\Vert w^k \Vert \leq \delta,$

then stop. Otherwise go to Step 3. step 3. $g^{k+1} = -\|w^k\|^{-1}w^k$.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

メロメ メ御 メメ ミメメ ミメー

つくい

An algorithm for descent direction (Alg1)

step $1.$ compute an r -secant $s^1 = s(x,g^1,r)$. Set $\overline{W}_1(x) = \{s^1\}$ and $k = 1$ step 2. $\|w^k\|^2 = \min\{\|w\|^2: w \in co\overline{W}_k(x)\}.$ If $\Vert w^k \Vert \leq \delta,$

then stop. Otherwise go to Step 3.

step 3. $g^{k+1} = -\|w^k\|^{-1}w^k$. step 4. $f\big(x+rg^{k+1}\big)-f(x)\leq -cr\|w^k\|,$ then stop. Otherwise go to Step 5.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

4 m + 4 m + 4 m +

つくい

An algorithm for descent direction (Alg1)

step $1.$ compute an r -secant $s^1 = s(x,g^1,r)$. Set $\overline{W}_1(x) = \{s^1\}$ and $k=1$. step 2. $\|w^k\|^2 = \min\{\|w\|^2: w \in co\overline{W}_k(x)\}.$ If $\Vert w^k \Vert \leq \delta,$

then stop. Otherwise go to Step 3.

Step 3.
$$
g^{k+1} = -\|w^k\|^{-1}w^k
$$
.

\nstep 4. $f(x + rg^{k+1}) - f(x) \le -cr\|w^k\|$, then stop. Otherwise go to Step 5.

\nstep 5. $s^{k+1} = s(x, g^{k+1}, r)$ with respect to the direction g^{k+1} , construct the set $\overline{W}_{k+1}(x) = co\{\overline{W}_k(x) \cup \{s^{k+1}\}\}$, set $k = k + 1$ and go to Step 2.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-56-0) [Numerical Results](#page-61-0)

K ロ ト K 倒 ト K 走 ト

- 4 店 ト

 $2Q$

扂

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in R^n$ and set $k = 0$.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-56-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

へのへ

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in R^n$ and set $k = 0$.

step 2. Apply Alg 1 at $x=x^k$ Either $\|v^k\| \leq \delta$ or for the search direction $g^k = -\|v^k\|^{-1}v^k$

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-56-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in R^n$ and set $k = 0$.

step 2. Apply Alg 1 at $x=x^k$ Either $\|v^k\| \leq \delta$ or for the search direction $g^k = -\|v^k\|^{-1}v^k$ step 3. If $\Vert v^k \Vert \leq \delta$ then stop. Otherwise go to Step 4.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

扂

The secant method (r, δ) -stationary point(Alg 2)

$$
step 1. x^0 \in R^n \text{ and set } k = 0.
$$

step 2. Apply Alg 1 at
$$
x = x^k
$$
 Either $||v^k|| \leq \delta$ or for the search direction $g^k = -||v^k||^{-1}v^k$ step 3. If $||v^k|| \leq \delta$ then stop. Otherwise go to Step 4. step 4. $x^{k+1} = x^k + \sigma_k g^k$, where σ_k is defined as follows

$$
\sigma_k = \arg \max \left\{ \sigma \geq 0: \; f(x^k + \sigma g^k) - f(x^k) \leq -c_2 \sigma ||v^k|| \right\}.
$$

Set $k = k + 1$ and go to Step 2.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶

重

 $2Q$

The secant method (Alg 3)

step 1. $x^0 \in R^n$ and set $k = 0$.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

The secant method (Alg 3)

step 1. $x^0 \in R^n$ and set $k = 0$.

step 2. Apply Alg 2 to x^k for $r = r_k$ and $\delta = \delta_k$. This algorithm terminates after a finite number of iterations $p > 0$ and as a result the algorithm finds (r_k, δ_k) -stationary point x^{k+1} .

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

The secant method (Alg 3)

step 1. $x^0 \in R^n$ and set $k = 0$.

step 2. Apply Alg 2 to x^k for $r = r_k$ and $\delta = \delta_k$. This algorithm terminates after a finite number of iterations $p > 0$ and as a result the algorithm finds (r_k, δ_k) -stationary point x^{k+1} .

step 3. Set $k = k + 1$ and go to Step 2.

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

Convergence Theorem

Theorem

Assume that the function f is locally Lipschitz and the set $\mathcal{L}(x^0)$ is bounded for starting points $x^0 \in R^n$. Then every accumulation point of the sequence $\{x^k\}$ belongs to the set $X^0 = \{x \in R^n : 0 \in \partial f(x)\}.$

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

メロメ メ団 メメ ミメ メモメ

È

 299

Results

[Definitions](#page-33-0) [Optimality Condition and Descent Direction](#page-44-0) [The Secant Algorithm](#page-53-0) [Numerical Results](#page-61-0)

メロメメ 御き メミメメ ミト

È

 299

Results

