A Secant Method for Nonsmooth Optimization

Asef Nazari

CSIRO Melbourne

CARMA Workshop on Optimization, Nonlinear Analysis, Randomness and Risk Newcastle, Australia 12 July, 2014

- 4 回 2 - 4 □ 2 - 4 □

æ

1 Background

- The Problem
- Optimization Algorithms and components
- Subgradient and Subdifferential

2 Secant Method

- Definitions
- Optimality Condition and Descent Direction
- The Secant Algorithm
- Numerical Results

A ►

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

The problem

Unconstrained Optimization Problem

 $\min_{x\in R^n}f(x)$

- $f: \mathbb{R}^n \to \mathbb{R}^n$
- Locally Lipshitz Ö

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

The problem

Unconstrained Optimization Problem

 $\min_{x\in R^n}f(x)$

- $f: \mathbb{R}^n \to \mathbb{R}^n$
- Locally Lipshitz Ö
- Why just unconstrained?

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x\in Y} f(x)$

where $Y \subset \mathbb{R}^n$.

The Problem Optimization Algorithms and components Subgradient and Subdifferential

<ロ> <同> <同> <同> < 同> < 同>

æ

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x\in Y} f(x)$

where $Y \subset R^n$.

Distance function

$$dist(x, Y) = \min_{y \in Y} \|y - x\|$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

Transforming Constrained into Unconstrained

Constrained Optimization Problem

 $\min_{x\in Y} f(x)$

where $Y \subset R^n$.

Distance function

$$dist(x,Y) = \min_{y \in Y} \|y - x\|$$

• Theory of penalty function (under some conditions)

$$\min_{x\in R^n} f(x) + \sigma dist(x, y)$$

• $f(x) + \sigma dist(x, y)$ is a nonsmooth function

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x \in R^n} f(x)$ $f(x) = \max_{1 \le i \le m} f_i(x)$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x\in R^n}f(x)$

$$f(x) = \max_{1 \le i \le m} f_i(x)$$

• System of Nonlinear Equations $f_i(x) = 0, \quad i = 1, ..., m$,

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

Sources of Nonsmooth Problems

Minimax Problem

 $\min_{x\in R^n}f(x)$

$$f(x) = \max_{1 \le i \le m} f_i(x)$$

• System of Nonlinear Equations $f_i(x) = 0, \quad i = 1, ..., m,$ we often do $\min_{x \in \mathbb{R}^n} \|\overline{f}(x)\|$

where
$$\overline{f}(x) = (f_1(x), \ldots, f_m(x))$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

æ

Structure of Optimization Algorithms

- Step 1 Initial Step $x_0 \in R^n$
- Step 2 Termination Criteria
- Step 3 Finding descent direction d_k at x_k
- Step 4 Finding step size $f(x_k + \alpha_k d_k) < f(x_k)$
- Step 5 Loop $x_{k+1} = x_k + \alpha_k d_k$ and go to step 2.

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イポト イヨト イヨト

3

Classification of Algorithms Based on d_k and α_k

Directions

- $d_k = -\nabla f(x_k)$ Steepest Descent Method
- $d_k = -H^{-1}(x_k)\nabla f(x_k)$ Newton Method
- $d_k = -B^{-1} \nabla f(x_k)$ Quasi-Newton Method

The Problem Optimization Algorithms and components Subgradient and Subdifferential

Classification of Algorithms Based on d_k and α_k

Directions

- $d_k = -\nabla f(x_k)$ Steepest Descent Method
- $d_k = -H^{-1}(x_k)\nabla f(x_k)$ Newton Method
- $d_k = -B^{-1} \nabla f(x_k)$ Quasi-Newton Method

Step sizes

•
$$h(\alpha) = f(x_k + \alpha d_k)$$

- **1** exactly solve $h'(\alpha) = 0$ exact line search
- 2 loosly solve it, inexact line serach
- Trust region methods

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

When the objective function is smooth

- Descent direction $f'(x_k, d) < 0$
- $f'(x_k, d) = \langle \nabla f(x_k), d \rangle \leq 0$ descent direction
- $-\nabla f(x_k)$ steepest descent direction
- ||∇f(x_k)|| ≤ ε good stopping criteria (First Order Necessary Conditions)

The Problem Optimization Algorithms and components Subgradient and Subdifferential

<ロ> <部> <部> <き> <き> <

æ

Subgradient

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Subgradient

Basic Inequality for convex differentiable function:

$$f(x) \ge f(y) + \nabla f(y)^T (x - y) \quad \forall x \in Dom(f)$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

Subgradient

$$f(x) \ge f(y) + g^T (x - y) \quad \forall x \in Dom(f)$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Subgradient

$$f(x) \ge f(y) + g^T (x - y) \quad \forall x \in Dom(f)$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Subgradient

$$f(x) \ge f(y) + g^T (x - y) \quad \forall x \in Dom(f)$$

if
$$x < 0$$
, $g = -1$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Subgradient

$$f(x) \ge f(y) + g^T (x - y) \quad \forall x \in Dom(f)$$

if
$$x < 0$$
, $g = -1$
if $x > 0$, $g = 1$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロト イヨト イヨト イヨト

æ

Subgradient

$$f(x) \ge f(y) + g^T (x - y) \quad \forall x \in Dom(f)$$

if
$$x < 0$$
, $g = -1$
if $x > 0$, $g = 1$
if $x = 0$, $g \in [-1, 1]$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・日本 ・モト ・モト

æ

Subdifferential

 Set of all subgradients of f at x, ∂f(x), is called subdifferential.

The Problem Optimization Algorithms and components Subgradient and Subdifferential

æ

<ロ> <同> <同> <同> < 同> < 同>

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for f(x) = |x|, the subdifferential at x = 0 is $\partial f(0) = [-1, 1]$ For x > 0 $\partial f(x) = \{1\}$ For x < 0 $\partial f(x) = \{-1\}$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

æ

<ロ> <同> <同> <同> < 同> < 同>

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for f(x) = |x|, the subdifferential at x = 0 is $\partial f(0) = [-1, 1]$ For x > 0 $\partial f(x) = \{1\}$ For x < 0 $\partial f(x) = \{-1\}$
- f is differentiable at $x \iff \partial f(x) = \{\nabla f(x)\}$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

<ロ> <同> <同> <同> < 同> < 同>

2

Subdifferential

- Set of all subgradients of f at x, $\partial f(x)$, is called subdifferential.
- for f(x) = |x|, the subdifferential at x = 0 is $\partial f(0) = [-1, 1]$ For x > 0 $\partial f(x) = \{1\}$ For x < 0 $\partial f(x) = \{-1\}$
- f is differentiable at $x \iff \partial f(x) = \{\nabla f(x)\}$
- for Lipschitz functions (Clarke)

$$\partial f(x_0) = conv\{\lim \nabla f(x_i): x_i \longrightarrow x_0 \ \nabla f(x_i) \text{ exists}\}$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

Optimality Condition

• For a smooth convex function

$$f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 = \nabla f(x^*)$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

Optimality Condition

• For a smooth convex function

$$f(x^*) = \inf_{x \in Dom(f)} f(x) \iff 0 = \nabla f(x^*)$$

• For a nonsmooth convex function

$$f(x^*) = \inf_{x \in Dom(f)} f(x) \iff 0 \in \partial f(x^*)$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

æ

Directional derivative

• In Smooth Case

$$f'(x_k,d) = \lim_{\lambda \to 0^+} rac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \langle
abla f(x_k), d
angle$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

Directional derivative

• In Smooth Case

$$f'(x_k,d) = \lim_{\lambda \to 0^+} rac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \langle
abla f(x_k), d
angle$$

In nonsmooth case

$$f'(x_k, d) = \lim_{\lambda \to 0^+} rac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \sup_{g \in \partial f(x_k)} \langle g^T, d \rangle$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

・ロト ・回ト ・ヨト ・ヨト

æ

Descent Direction

In Smooth Case, if f'(xk, d) = ⟨∇f(xk), d⟩ < 0. (−∇f(xk)) steepest descent direction)

 Outline
 The Problem

 Background
 Optimization Algorithms and components

 Secant Method
 Subgradient and Subdifferential

Descent Direction

- In Smooth Case, if f'(xk, d) = ⟨∇f(xk), d⟩ < 0. (−∇f(xk)) steepest descent direction)
- In nonsmooth case, if $f'(x_k, d) < 0$. It is proved that

$$d = - \underset{g \in \partial f(x_k)}{\operatorname{argmin}} \|g\|$$

- < ∃ >

The Problem Optimization Algorithms and components Subgradient and Subdifferential

イロン イヨン イヨン イヨン

æ

In Summary

• Optimality condition

$$f(x^*) = \inf_{x \in Dom(f)} f(x) \Longleftrightarrow 0 \in \frac{\partial f(x^*)}{\partial f(x^*)}$$

Directional Derivative

$$f'(x_k, d) = \lim_{\lambda \to 0^+} rac{f(x_k + \lambda d) - f(x_k)}{\lambda} = \sup_{g \in \partial f(x_k)} \langle g^{\mathsf{T}}, d \rangle$$

• Steepest Descent Direction

$$d = -\operatorname*{argmin}_{g \in \partial f(\mathsf{x}_k)} \|g\|$$

The Problem Optimization Algorithms and components Subgradient and Subdifferential

Methods for nonsmooth problems

The way we treat $\partial f(x)$ leads to different types of algorithms in nonsmooth optimization

- Subgradient method (one subgradient at each iteration)
- Bundle method (a bundle of subgradients in each iteration)
- Gradient Sampling method
- smoothing technique

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロト ・回ト ・ヨト ・ヨト

3

Definition of *r*-secant

• $S_1 = \{g \in R^n : \|g\| = 1\}$ the unit sphere in R^n

 Outline Background
 Definitions

 Secant Method
 Optimality Condition and Descent Direction

 The Secant Algorithm
 The Secant Algorithm

Definition of *r*-secant

- $S_1 = \{g \in R^n : \|g\| = 1\}$ the unit sphere in R^n
- $g \in S_1$ we define

$$g^{max} = \max\{|g_i|, i = 1, ..., n\}.$$

・ロト ・回ト ・ヨト ・ヨト

æ

 Outline Background
 Definitions

 Secant Method
 Optimality Condition and Descent Direction

 The Secant Algorithm
 The Secant Algorithm

Definition of *r*-secant

- $S_1 = \{g \in R^n : \|g\| = 1\}$ the unit sphere in R^n
- $g \in S_1$ we define

$$g^{max} = \max\{|g_i|, i = 1, ..., n\}.$$

•
$$g \in S_1$$
 and $g_j = g^{max}$, $v \in \partial f(x + rg)$

・ロト ・回ト ・ヨト ・ヨト

æ

 Outline Background
 Definitions

 Secant Method
 Optimality Condition and Descent Direction

 The Secant Algorithm
 The Secant Algorithm

Definition of *r*-secant

- $S_1 = \{g \in R^n : \|g\| = 1\}$ the unit sphere in R^n
- $g \in S_1$ we define

$$g^{max} = \max\{|g_i|, i = 1, ..., n\}.$$

•
$$g \in S_1$$
 and $g_j = g^{max}$, $v \in \partial f(x + rg)$
• $s = s(x, g, r) \in \mathbb{R}^n$ where

$$s = (s_1, \ldots, s_n)$$
: $s_i = v_i, i = 1, \ldots, n, i \neq j$

and

$$s_j = \frac{f(x+rg) - f(x) - r\sum_{i=1, i\neq j}^n s_i g_i}{rg_j}$$

is called an *r*-secant of the function f at a point x in the direction g.

Outline Background Secant Method Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

Facts about *r*-secant

• If n = 1, $s = \frac{f(x + rg) - f(x)}{rg}$

< □ > < □ > < □ > < □ > < □ > .

æ

Facts about *r*-secant

• If
$$n = 1$$
,
 $s = \frac{f(x + rg) - f(x)}{rg}$

• Mean Value Theorem for *r*-secants

$$f(x+rg) - f(x) = r\langle s(x,g,r),g \rangle$$

・ロト ・日本 ・モト ・モト

æ

Facts about *r*-secant

• If
$$n = 1$$
,
$$s = \frac{f(x + rg) - f(x)}{rg}$$

• Mean Value Theorem for *r*-secants

$$f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle$$

• Set of all possible *r*-secants of the function *f* at the point *x*

$$S_rf(x) = \{s \in R^n : \exists g \in S_1 : s = s(x, g, r)\}$$

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶

æ

Facts about *r*-secant

• If
$$n = 1$$
,
$$s = \frac{f(x + rg) - f(x)}{rg}$$

• Mean Value Theorem for *r*-secants

$$f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle$$

• Set of all possible *r*-secants of the function *f* at the point *x*

$$S_r f(x) = \{s \in \mathbb{R}^n : \exists g \in S_1 : s = s(x, g, r)\}$$

・ロト ・回ト ・ヨト

Facts about *r*-secant

• If
$$n = 1$$
,
$$s = \frac{f(x + rg) - f(x)}{rg}$$

• Mean Value Theorem for *r*-secants

$$f(x+rg)-f(x)=r\langle s(x,g,r),g\rangle$$

• Set of all possible *r*-secants of the function *f* at the point *x*

$$S_rf(x) = \{s \in R^n : \exists g \in S_1 : s = s(x, g, r)\}$$

Ompact for r > 0
 (x, r) → S_rf(x), r > 0 is closed and upper semi-continuous

イロト イヨト イヨト イヨト

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

A new set

•
$$S_0^c f(x) = conv\{v \in \mathbb{R}^n : \exists (g \in S_1, r_k \to +0, k \to +\infty) :$$

 $v = \lim_{k \to +\infty} s(x, g, r_k)\},$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

A new set

•
$$S_0^c f(x) = conv\{v \in \mathbb{R}^n : \exists (g \in S_1, r_k \to +0, k \to +\infty) :$$

$$v = \lim_{k \to +\infty} s(x, g, r_k) \},$$

• For regular and semismooth function f at a point $x \in \mathbb{R}^n$:

$$\partial f(x) = S_0^c f(x).$$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロト イヨト イヨト イヨト

Optimality condition

 Let x ∈ Rⁿ be a local minimizer of the function f and it is directionally differentiable at x. Then

 $0\in S_0^cf(x).$

- $x \in R^n$ is an *r*-stationary point for a function f on R^n if $0 \in S_r^c f(x)$.
- $x \in R^n$ is an (r, δ) -stationary point for a function f on R^n if $0 \in S_r^c f(x) + B_{\delta}$ where

$$B_{\delta} = \{ v \in R^n : \|v\| \le \delta \}.$$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

<ロ> <同> <同> <三> < 回> < 回> < 三>

< ≣ >

Descent Direction

• If $x \in \mathbb{R}^n$ is not an *r*-stationary point of a function *f* on \mathbb{R}^n ,

$$0 \notin S_r^c f(x).$$

we can compute a descent direction using the set $S_r^c f(x)$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロン ・回 と ・ 回 と ・ 回 と

2

Descent Direction

• If $x \in \mathbb{R}^n$ is not an *r*-stationary point of a function *f* on \mathbb{R}^n , $0 \notin S_r^c f(x)$.

we can compute a descent direction using the set $S_r^c f(x)$ • Let $x \in \mathbb{R}^n$ and for given r > 0

$$\begin{split} \min\{\|v\|: v\in S^c_r f(x)\} &= \|v^0\| > 0.\\ \text{Then for } g^0 &= -\|v^0\|^{-1}v^0\\ &\quad f(x+rg^0) - f(x) \leq -r\|v^0\|. \end{split}$$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロト イヨト イヨト イヨト

Descent Direction

• If $x \in \mathbb{R}^n$ is not an *r*-stationary point of a function *f* on \mathbb{R}^n , $0 \notin S_r^c f(x)$.

we can compute a descent direction using the set $S_r^c f(x)$ • Let $x \in \mathbb{R}^n$ and for given r > 0

$$\begin{split} \min\{\|v\|: v \in S_r^c f(x)\} &= \|v^0\| > 0 \\ \text{Then for } g^0 &= -\|v^0\|^{-1}v^0 \\ f(x + rg^0) - f(x) \leq -r\|v^0\|. \end{split}$$

۲

minimize
$$||v||^2$$

subjectto $v \in S_r^c f(x)$.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロト ・回ト ・ヨト ・ヨト

2

An algorithm for descent direction (Alg1)

step 1. compute an r-secant $s^1 = s(x, g^1, r)$. Set $\overline{W}_1(x) = \{s^1\}$ and k = 1.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロン イヨン イヨン イヨン

2

An algorithm for descent direction (Alg1)

step 1. compute an *r*-secant $s^1 = s(x, g^1, r)$. Set $\overline{W}_1(x) = \{s^1\}$ and k = 1. step 2. $\|w^k\|^2 = \min\{\|w\|^2 : w \in co\overline{W}_k(x)\}$. If $\|w^k\| \le \delta$,

then stop. Otherwise go to Step 3.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロン イ部ン イヨン イヨン 三日

An algorithm for descent direction (Alg1)

step 1. compute an *r*-secant $s^1 = s(x, g^1, r)$. Set $\overline{W}_1(x) = \{s^1\}$ and k = 1. step 2. $\|w^k\|^2 = \min\{\|w\|^2 : w \in co\overline{W}_k(x)\}$. If $\|w^k\| \le \delta$,

then stop. Otherwise go to Step 3. step 3. $g^{k+1} = -\|w^k\|^{-1}w^k$.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロン イ部ン イヨン イヨン 三日

An algorithm for descent direction (Alg1)

step 1. compute an *r*-secant $s^1 = s(x, g^1, r)$. Set $\overline{W}_1(x) = \{s^1\}$ and k = 1. step 2. $\|w^k\|^2 = \min\{\|w\|^2 : w \in co\overline{W}_k(x)\}$. If $\|w^k\| \le \delta$,

then stop. Otherwise go to Step 3. step 3. $g^{k+1} = -\|w^k\|^{-1}w^k$. step 4. $f(x + rg^{k+1}) - f(x) \le -cr\|w^k\|$, then stop. Otherwise go to Step 5.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロン イヨン イヨン イヨン

An algorithm for descent direction (Alg1)

step 1. compute an *r*-secant $s^1 = s(x, g^1, r)$. Set $\overline{W}_1(x) = \{s^1\}$ and k = 1. step 2. $\|w^k\|^2 = \min\{\|w\|^2 : w \in co\overline{W}_k(x)\}$. If $\|w^k\| \le \delta$,

then stop. Otherwise go to Step 3.

step 3. $g^{k+1} = -\|w^k\|^{-1}w^k$. step 4. $f(x + rg^{k+1}) - f(x) \le -cr\|w^k\|$, then stop. Otherwise go to Step 5.

step 5. $s^{k+1} = s(x, g^{k+1}, r)$ with respect to the direction g^{k+1} , construct the set $\overline{W}_{k+1}(x) = co\left\{\overline{W}_k(x) \bigcup \{s^{k+1}\}\right\}$, set k = k + 1 and go to Step 2.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

<ロ> (日) (日) (日) (日) (日)

æ

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

<ロ> (日) (日) (日) (日) (日)

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

step 2. Apply Alg 1 at $x = x^k$ Either $||v^k|| \le \delta$ or for the search direction $g^k = -||v^k||^{-1}v^k$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロト ・回ト ・ヨト ・ヨト

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

step 2. Apply Alg 1 at $x = x^k$ Either $||v^k|| \le \delta$ or for the search direction $g^k = -||v^k||^{-1}v^k$ step 3. If $||v^k|| \le \delta$ then stop. Otherwise go to Step 4.

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

イロト イヨト イヨト イヨト

The secant method (r, δ) -stationary point(Alg 2)

step 1. $x^0 \in R^n$ and set k = 0.

step 2. Apply Alg 1 at
$$x = x^k$$

Either $||v^k|| \le \delta$ or for the search direction $g^k = -||v^k||^{-1}v^k$
step 3. If $||v^k|| \le \delta$ then stop. Otherwise go to Step 4.
step 4. $x^{k+1} = x^k + \sigma_k g^k$, where σ_k is defined as follows

$$\sigma_k = rg\max\left\{\sigma \geq \mathsf{0}: \; f(x^k + \sigma g^k) - f(x^k) \leq -c_2\sigma \|v^k\|
ight\}.$$

Set k = k + 1 and go to Step 2.

Definitions Optimality Condition and Descent Direction **The Secant Algorithm** Numerical Results

・ロト ・回ト ・ヨト ・ヨト

æ

The secant method (Alg 3)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

Definitions Optimality Condition and Descent Direction **The Secant Algorithm** Numerical Results

・ロト ・回ト ・ヨト

The secant method (Alg 3)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

step 2. Apply Alg 2 to x^k for $r = r_k$ and $\delta = \delta_k$. This algorithm terminates after a finite number of iterations p > 0 and as a result the algorithm finds (r_k, δ_k) -stationary point x^{k+1} .

Definitions Optimality Condition and Descent Direction **The Secant Algorithm** Numerical Results

The secant method (Alg 3)

step 1. $x^0 \in \mathbb{R}^n$ and set k = 0.

step 2. Apply Alg 2 to x^k for $r = r_k$ and $\delta = \delta_k$. This algorithm terminates after a finite number of iterations p > 0 and as a result the algorithm finds (r_k, δ_k) -stationary point x^{k+1} .

step 3. Set k = k + 1 and go to Step 2.

Definitions Optimality Condition and Descent Direction **The Secant Algorithm** Numerical Results

Image: A math a math

Convergence Theorem

Theorem

Assume that the function f is locally Lipschitz and the set $\mathcal{L}(x^0)$ is bounded for starting points $x^0 \in \mathbb{R}^n$. Then every accumulation point of the sequence $\{x^k\}$ belongs to the set $X^0 = \{x \in \mathbb{R}^n : 0 \in \partial f(x)\}.$

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

æ

Results

Prob.	Secant		Bundle			
	Jav	n_b	n_x	far	n_b	n_s
P1	1.95222	20	20	1.95222	20	20
P2	-44	20	20	-44	20	20
P3	3.70348	20	20	3.70348	20	20
P4	0.90750	17	17	0.90750	17	17
P5	0.57592	4	4	0.00000	20	20
P6	3.59972	20	20	3.59972	20	20
P7	-44	20	20	-28.14011	12	12
P8	0.03565	7	13	0.03051	9	17
P9	0.02886	0	7	0.01520	2	16
P10	115.70644	20	20	115.70644	20	20
P11	0.00291	0	0	0.00264	20	20
P12	0.01773	0	6	0.02752	14	16
P13	0.10916	3	9	0.30582	3	15
P14	0.24037	8	18	0.32527	5	9
P15	0.03490	20	20	0.30572	12	12
P16	0.12402	0	11	0.39131	2	9
P17	680.63006	20	20	680.63006	20	20
P18	24.30621	20	20	24.30621	20	20
P19	93.90566	20	20	93.90525	20	20
P20	0.00302	0	0	0.00000	20	20
P21	0.21456	0	9	0.22057	1	14
P22	2.00000	20	20	2.00000	20	20
P23	0.10000	18	18	0.07607	17	17
P24	1.50000	7	18	2.30008	2	10
P25	0.00000	20	20	0.0000.0	20	20
P26	0.00000	20	20	0.00000	20	20
P27	24.72876	0	18	35.19230	0	2
P28	8.53416×10^{6}	10	18	10.29861×10^{6}	5	12
P29	5.56355×10^6	3	20	7.10874×10^{6}	0	9
P30	2.93562×10^{6}	2	19	3.16944×10^{6}	0	2
P31	7.27436×10^{5}	11	19	7.26213×10^{5}	12	20
P32	3.94879×10^{5}	10	19	3.94922×10^{5}	5	13
P33	1.86467×10^{5}	13	18	1.88295×10^{5}	6	9

Definitions Optimality Condition and Descent Direction The Secant Algorithm Numerical Results

・ロン ・四と ・ヨン ・ヨン

æ

Results

Prob.	Secant			Bundle		
	nf	naub	t	n_f	naub	t
P1	221	160	0.000	10	10	0.001
P2	1113	601	0.002	12	11	0.001
P3	974	701	0.143	65	55	0.003
P4	749	593	0.002	22	9	0.000
P5	4735	461	0.002	493	251	0.001
P6	574	309	0.001	20	16	0.000
P7	1225	579	0.003	146	56	0.001
P8	1184	342	0.009	1626	171	0.009
P9	2968	601	0.003	57891	4843	0.186
P10	1192	619	0.010	29	15	0.001
P11	1829	811	0.005	26081	1904	0.122
P12	4668	1327	0.014	372	173	0.007
P13	1310	749	0.014	61	26	0.002
P14	837	686	0.020	51	23	0.002
P15	1373	1090	0,085	4985	445	0.108
P16	3463	1989	0.302	60331	4761	1.099
P17	1270	860	0.012	58	33	0.000
P18	2234	1592	0.029	18	15	0.000
P19	4752	4001	0.362	35	26	0.003
P20	3399	2733	3.393	160	52	0.030
P21	1529	849	0.249	66280	4974	2.971
P22	289	198	0.001	32	32	0.000
P23	2278	277	0.001	22	22	0.000
P24	470	450	0.003	37	37	0.000
P25	1022	983	0.010	25	25	0.001
P26	2677	920	0.005	68	68	0.001
P27	725	707	0.039	37	37	0.002
P28	305	289	0.099	16	16	0.007
P29	417	401	0.360	21	21	0.022
P30	766	736	2.734	51	51	0.205
P31	283	257	0.254	19	19	0.024
P32	406	370	0.955	28	28	0.085
P33	703	653	7.003	67	67	0.763