Expectations on Fractal IFS Attractors

Michael Rose

Principal Supervisor: Laureate Professor Jon Borwein Co-supervisor: Associate Professor Brailey Sims

12th July 2014

Synapse spatial distributions

Outline:

- 1. Summary of SCS results
- 2. Extension to IFS attractors
- 3. Examples

Summary of SCS results

D.H. Bailey, J.M. Borwein, R.E. Crandall and M.G. Rose, *Expectations on fractal sets*, J. Appl. Math. Comput. 220 (2013).

Ternary expansion for coordinates of $x = (x_1, ..., x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

Ternary expansion for coordinates of $x = (x_1, ..., x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

 $x_1 = 0 \cdot x_{11} x_{12} x_{13} \dots$

Ternary expansion for coordinates of $x = (x_1, ..., x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

 $\begin{array}{rcl} x_1 & = & 0 \, . \, x_{11} \, x_{12} \, x_{13} \dots \\ x_2 & = & 0 \, . \, x_{21} \, x_{22} \, x_{23} \dots \end{array}$

Ternary expansion for coordinates of $x = (x_1, \ldots, x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

$$\begin{array}{rcl} x_1 & = & 0 \, . \, x_{11} \, x_{12} \, x_{13} \dots \\ x_2 & = & 0 \, . \, x_{21} \, x_{22} \, x_{23} \dots \\ & \vdots \\ x_n & = & 0 \, . \, x_{n1} \, x_{n2} \, x_{n3} \dots \end{array}$$

Ternary expansion for coordinates of $x = (x_1, \ldots, x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

Ternary expansion for coordinates of $x = (x_1, ..., x_n) \in [0, 1]^n$ (with $x_{jk} \in \{0, 1, 2\}$):

A helpful counting function:

$$U(c) := \#\{1\text{'s in ternary vector } c\}$$

$$Z(b) := \#\{0\text{'s in ternary vector } b\}$$

Definition (String-generated Cantor set) Fix positive integers n and p.

Definition (String-generated Cantor set)

Fix positive integers n and p. Given an embedding space $[0, 1]^n$ and an entirely-periodic string $P = P_1P_2 \dots P_p$ of non-negative integers with $P_i \leq n$ for all $i = 1, 2, \dots, p$,

Definition (String-generated Cantor set)

Fix positive integers n and p. Given an embedding space $[0,1]^n$ and an entirely-periodic string $P = P_1P_2...P_p$ of non-negative integers with $P_i \leq n$ for all i = 1, 2, ..., p, the **String-Generated Cantor Set (SCS)**, denoted $C_n(P)$, is the set of all admissible $x \in [0,1]^n$, where

$$x \text{ admissible } \iff U(c_k) \leq P_k \quad \forall k \in \mathbb{N}$$

Definition (String-generated Cantor set)

Fix positive integers n and p. Given an embedding space $[0,1]^n$ and an entirely-periodic string $P = P_1P_2...P_p$ of non-negative integers with $P_i \leq n$ for all i = 1, 2, ..., p, the **String-Generated Cantor Set (SCS)**, denoted $C_n(P)$, is the set of all admissible $x \in [0,1]^n$, where

x admissible
$$\iff U(c_k) \le P_k \quad \forall k \in \mathbb{N}$$

with notational periodicity assumed: $P_{p+k} := P_k$ for all $k \ge 1$.

 $B_n(s)$ is the order-s moment of separation between a random point and a **vertex** of the *n*-cube:

 $B_n(s)$ is the order-s moment of separation between a random point and a **vertex** of the *n*-cube:

$$B_n(s) := \langle |r|^s \rangle_{r \in [0,1]^n} = \int_{r \in [0,1]^n} |r|^s \mathcal{D}r$$

 $B_n(s)$ is the order-s moment of separation between a random point and a **vertex** of the *n*-cube:

$$B_n(s) := \langle |r|^s \rangle_{r \in [0,1]^n} = \int_{r \in [0,1]^n} |r|^s \mathcal{D}r$$

 $\Delta_n(s)$ is the order-*s* moment of separation between **two random points** in the *n*-cube:

 $B_n(s)$ is the order-s moment of separation between a random point and a **vertex** of the *n*-cube:

$$B_n(s) := \langle |r|^s \rangle_{r \in [0,1]^n} = \int_{r \in [0,1]^n} |r|^s \mathcal{D}r$$

 $\Delta_n(s)$ is the order-*s* moment of separation between **two random points** in the *n*-cube:

$$\Delta_n(s) := \langle |r-q|^s
angle_{r,q \in [0,1]^n} = \int_{r,q \in [0,1]^n} |r-q|^s \mathcal{D}r \mathcal{D}q$$

Fractal Box Integrals

Definition of expectation

Definition (Expectation over an SCS) The expectation of $F : \mathbb{R}^n \to \mathcal{C}$ on an SCS $C_n(P)$ is defined by:

Definition of expectation

Definition (Expectation over an SCS) The expectation of $F : \mathbb{R}^n \to \mathcal{C}$ on an SCS $C_n(P)$ is defined by:

$$\langle F(r) \rangle_{r \in C_n(P)} := \lim_{j \to \infty} \frac{1}{N_1 \cdots N_j} \sum_{\substack{U(c_i) \le P_i \\ U(c_i) \le P_i}} F(c_1/3 + c_2/3^2 + \dots + c_j/3^j)$$

$$\langle F(r-q) \rangle_{r,q \in C_n(P)} := \lim_{\substack{j \to \infty \\ j \to \infty}} \frac{1}{N_1^2 \cdots N_j^2} \sum_{\substack{U(c_i) \le P_i \\ U(d_i) \le P_i}} F((c_1 - d_1)/3 + \dots + (c_j - d_j)/3^j)$$

when the respective limits exist.

Useful formulation of expectation

Next, determine a probability measure such that

$$\langle F(r) \rangle_{r \in C_n(P)} = \int_{r \in [0,1]^n} F(r) \phi(r) \mathcal{D}r$$

where ϕ is a **probability density** that vanishes on inadmissible $r \in [0, 1]^n \setminus C_n(P)$.

Scaling relations for probability densities

Proposition (Scaling relations for probability densities) For r, q in \mathbb{R}^n the probability densities pertaining to the box integrals B and Δ satisfy the scaling relations: Scaling relations for probability densities

Proposition (Scaling relations for probability densities) For r, q in \mathbb{R}^n the probability densities pertaining to the box integrals B and Δ satisfy the scaling relations:

$$\phi(r) = \frac{3^{pn}}{\prod_{k=1}^{p} N_k} \sum_{\substack{U(c_k) \le P_k}} \phi(3^p(r - \sum_{j=1}^{p} \frac{c_j}{3^j}))$$

$$\Phi(d := r - q) = \frac{3^{pn}}{\prod_{k=1}^{p} N_k^2} \sum_{\substack{Z(b_k) \le P_k \\ Z(a_k) \le P_k}} \Phi\left(3^p(d - \sum_{j=1}^{p} \frac{(b_j - a_j)}{3^j})\right)$$

Functional equations for expectations

Proposition (Functional equations for expectations)

For r, q in \mathbb{R}^n and appropriate F the expectations pertaining to the box integrals B and Δ satisfy the **functional equations**:

Functional equations for expectations

Proposition (Functional equations for expectations)

For r, q in \mathbb{R}^n and appropriate F the expectations pertaining to the box integrals B and Δ satisfy the **functional equations**:

$$\langle F(r) \rangle_{r \in C_n(P)} = \frac{1}{\prod_{j=1}^p N_j} \sum_{\substack{U(c_k) \le P_k \\ U(c_k) \le P_k}} \langle F(\frac{r}{3^p} + \sum_{j=1}^p \frac{C_j}{3^j}) \rangle$$

$$\langle F(d := r - q) \rangle_{r,q \in C_n(P)} = \frac{1}{\prod_{j=1}^p N_j^2} \sum_{\substack{Z(b_k) \le P_k \\ Z(a_k) \le P_k}} \left\langle F(\frac{d}{3^p} + \sum_{j=1}^p \frac{(b_j - a_j)}{3^j}) \right\rangle$$

The functional expectation relations directly yield all expectations $B(2, C_n(P))$ as follows:

The functional expectation relations directly yield all expectations $B(2, C_n(P))$ as follows:

Theorem (Closed forms for $B(2, C_n(P))$ and $\Delta(2, C_n(P))$) For any embedding dimension n and SCS $C_n(P)$ the box integral $B(2, C_n(P))$ is rational, given by the closed form:

$$B(2, C_n(P)) = \frac{n}{4} + \frac{1}{1 - 9^{-p}} \sum_{k=1}^{p} \frac{1}{9^k} \frac{\sum_{j=0}^{P_k} {n \choose j} 2^{n-j} (n-j)}{\sum_{j=0}^{P_k} {n \choose j} 2^{n-j}}$$

The functional expectation relations directly yield all expectations $B(2, C_n(P))$ as follows:

Theorem (Closed forms for $B(2, C_n(P))$ and $\Delta(2, C_n(P))$) For any embedding dimension n and SCS $C_n(P)$ the box integral $B(2, C_n(P))$ is rational, given by the closed form:

$$B(2, C_n(P)) = \frac{n}{4} + \frac{1}{1 - 9^{-p}} \sum_{k=1}^{p} \frac{1}{9^k} \frac{\sum_{j=0}^{P_k} {n \choose j} 2^{n-j} (n-j)}{\sum_{j=0}^{P_k} {n \choose j} 2^{n-j}}$$

and the corresponding box integral $\Delta(2, C_n(P))$ is also rational, given by:

$$\Delta(2, C_n(P)) = 2B(2, C_n(P)) - \frac{n}{2}$$

The first few cases for period-1 strings P are:

$$B(2, C_n(0)) = \frac{3}{8}n$$

$$B(2, C_n(1)) = \frac{n(3n+5)}{8n+16}$$

$$B(2, C_n(2)) = \frac{n(3n^2+7n+22)}{8n^2+24n+64}$$

$$B(2, C_n(n-1)) = \frac{n}{4}\left(1+\frac{3^{n-1}}{3^n-1}\right)$$

$$\Delta(2, C_n(0)) = \frac{1}{4}n$$

$$\Delta(2, C_n(1)) = \frac{n(n+1)}{4n+8}$$

$$\Delta(2, C_n(2)) = \frac{n(n^2+n+6)}{4n^2+12n+32}$$

$$\Delta(2, C_n(n-1)) = \frac{n}{6}\left(\frac{3^n}{3^n-1}\right)$$

$$\Delta(2, C_n(0)) = \frac{1}{4}n$$

$$\Delta(2, C_n(1)) = \frac{n(n+1)}{4n+8}$$

$$\Delta(2, C_n(2)) = \frac{n(n^2+n+6)}{4n^2+12n+32}$$

$$\Delta(2, C_n(n-1)) = \frac{n}{6}\left(\frac{3^n}{3^n-1}\right)$$

The classical box integrals over the unit *n*-cube are:

$$B_n(2) = rac{n}{3}$$
 and $\Delta_n(2) = rac{n}{6}$

which matches the output of our closed forms when P = n.

Special case - complex poles

Powerful **self-similarity relations** for $C_1(0)$ follow from the functional expectation relations:

$$B(s, C_1(0)) := \langle |r^s| \rangle_{r \in C_1(0)} = \frac{1}{2} \left\langle \left(\frac{r}{3}\right)^s \right\rangle + \frac{1}{2} \left\langle \left(\frac{r+2}{3}\right)^s \right\rangle$$
$$\Delta(s, C_1(0)) := \langle |d| := r - q|^s \rangle$$
$$= \frac{1}{2} \frac{1}{3^s} \left\langle |d|^s \right\rangle + \frac{1}{4} \frac{1}{3^s} \left\langle (2+d)^s + (2-d)^s \right\rangle$$

.

Special case - complex poles

Powerful **self-similarity relations** for $C_1(0)$ follow from the functional expectation relations:

$$\begin{split} B(s,C_1(0)) &:= \langle |r^s| \rangle_{r \in C_1(0)} = \frac{1}{2} \left\langle \left(\frac{r}{3}\right)^s \right\rangle + \frac{1}{2} \left\langle \left(\frac{r+2}{3}\right)^s \right\rangle \\ \Delta(s,C_1(0)) &:= \langle |d := r - q|^s \rangle \\ &= \frac{1}{2} \frac{1}{3^s} \left\langle |d|^s \right\rangle + \frac{1}{4} \frac{1}{3^s} \left\langle (2+d)^s + (2-d)^s \right\rangle \end{split}$$

Using the fact that $\langle (r/3)^s \rangle$ is itself a scaled expectation leads to:

$$B(s,C_1(0))=\frac{1}{2\cdot 3^s-1}\left\langle (r+2)^s\right\rangle$$

Special case - complex poles

Powerful **self-similarity relations** for $C_1(0)$ follow from the functional expectation relations:

$$\begin{split} B(s,C_1(0)) &:= \langle |r^s| \rangle_{r \in C_1(0)} = \frac{1}{2} \left\langle \left(\frac{r}{3}\right)^s \right\rangle + \frac{1}{2} \left\langle \left(\frac{r+2}{3}\right)^s \right\rangle \\ \Delta(s,C_1(0)) &:= \langle |d := r - q|^s \rangle \\ &= \frac{1}{2} \frac{1}{3^s} \left\langle |d|^s \right\rangle + \frac{1}{4} \frac{1}{3^s} \left\langle (2+d)^s + (2-d)^s \right\rangle \end{split}$$

Using the fact that $\langle (r/3)^s \rangle$ is itself a scaled expectation leads to:

$$B(s,C_1(0))=\frac{1}{2\cdot 3^s-1}\left\langle (r+2)^s\right\rangle$$
Special case - complex poles

This last expression reveals a pole in the *s*-plane at $s = -\log_3 2$. Self-similarity implies a general result:

Special case - complex poles

This last expression reveals a pole in the *s*-plane at $s = -\log_3 2$. Self-similarity implies a general result:

Theorem (Poles of $B(s, C_n(P))$)

For any embedding dimension n and any SCS $C_n(P)$, the (analytically continued) box integral $B(s, C_n(P))$ has a **pole** at

$$s = -\delta(C_n(P))$$

Special case - complex poles

This last expression reveals a pole in the *s*-plane at $s = -\log_3 2$. Self-similarity implies a general result:

Theorem (Poles of $B(s, C_n(P))$)

For any embedding dimension n and any SCS $C_n(P)$, the (analytically continued) box integral $B(s, C_n(P))$ has a **pole** at

$$s = -\delta(C_n(P))$$

Note that for the full unit *n*-cube $[0,1]^n$, the pole is at s = -n. This is consistent with the classical theory.

Extension to IFS attractors

Let (X, d) be a metric space and let (H(X), h(d)) be the associated space of non-empty compact subsets of X equipped with the Hausdorff metric h(d).

Let (X, d) be a metric space and let (H(X), h(d)) be the associated space of non-empty compact subsets of X equipped with the Hausdorff metric h(d).

Definition

A mapping $f : X \to X$ is said to be a contraction mapping with contractivity factor c if 0 < c < 1 and $d(f(x), f(y)) \le c \cdot d(x, y)$ for all $x, y \in X$.

Let (X, d) be a metric space and let (H(X), h(d)) be the associated space of non-empty compact subsets of X equipped with the Hausdorff metric h(d).

Definition

A mapping $f : X \to X$ is said to be a contraction mapping with contractivity factor c if 0 < c < 1 and $d(f(x), f(y)) \le c \cdot d(x, y)$ for all $x, y \in X$.

Definition

For each $i \in \{1, 2, ..., m\}$ (where $m \ge 2$), let $f_i : X \to X$ be a contraction mapping with contractivity factor $0 < c_i < 1$ and associated probability $0 < p_i < 1$ (where $\sum_{i=1}^{m} p_i = 1$). A (hyperbolic) iterated function system (IFS) with probabilities is the collection

$$\{X; w_1, \ldots, w_m; c_1, \ldots, c_m; p_1, \ldots, p_m\}$$

Theorem

Let $\{X; w_1, \ldots, w_m\}$ be an IFS with contractivity factor c. Then the transformation $f : H(X) \to H(X)$ defined by $f(S) = \bigcup_{n=1}^m f_n(S)$ for all $S \in H(X)$ is a contraction mapping on H(X) with contractivity factor s.

Theorem

Let $\{X; w_1, \ldots, w_m\}$ be an IFS with contractivity factor c. Then the transformation $f : H(X) \to H(X)$ defined by $f(S) = \bigcup_{n=1}^m f_n(S)$ for all $S \in H(X)$ is a contraction mapping on H(X) with contractivity factor s.

Theorem (The Contraction Mapping Theorem)

The mapping f possesses a unique fixed point $A \in H(X)$, which satisfies:

$$A = f(A) = \bigcup_{n=1}^{m} f_n(A)$$

and which is referred to as the attractor of the IFS.

Theorem

Let $\{X; w_1, \ldots, w_m\}$ be an IFS with contractivity factor c. Then the transformation $f : H(X) \to H(X)$ defined by $f(S) = \bigcup_{n=1}^m f_n(S)$ for all $S \in H(X)$ is a contraction mapping on H(X) with contractivity factor s.

Theorem (The Contraction Mapping Theorem)

The mapping f possesses a unique fixed point $A \in H(X)$, which satisfies:

$$A=f(A)=\bigcup_{n=1}^m f_n(A)$$

and which is referred to as the attractor of the IFS.

We will take as our 'fractal sets' those sets that can be expressed as the attractor of a (non-overlapping) IFS.

$$f_1(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right)$$
$$f_2(x,y) = \left(\frac{x+1}{2}, \frac{y+\sqrt{3}}{2}\right)$$
$$f_3(x,y) = \left(\frac{x+2}{2}, \frac{y}{2}\right)$$

SCS in IFS framework

Any given SCS can be expressed as the attractor of an IFS in the following manner:

Proposition

The IFS corresponding to the SCS $C_n(P)$ is:

$$\{[0,1]^n \subset \mathbb{R}^n; f_1, f_2, \dots, f_i, \dots, f_m\}$$

$$(1)$$

where $f_i(x) = \left(\frac{1}{3}\right)^p x + \left(\frac{1}{3}\right) c_{1_i} + \left(\frac{1}{3}\right)^2 c_{2_i} + \ldots + \left(\frac{1}{3}\right)^p c_{p_i}$ for $i \in \{1, 2, \ldots, m\}$ ranging over all admissible columns c_k , where $m = \prod_{k=1}^p N_k$ and $N_k = \sum_{j=0}^{P_k} {n \choose j} 2^{n-j}$.

Expectations over IFSs

Definition (Fundamental definition of expectation)

Let $\{X; f_1, \ldots, f_m\}$ be an IFS with attractor $A \in H(X)$. Let $F : X \to \mathbb{C}$ be a complex-valued function over X. The expectation of F over A, $\langle F(x) \rangle_{x \in A}$, is defined as:

Expectations over IFSs

Definition (Fundamental definition of expectation)

Let $\{X; f_1, \ldots, f_m\}$ be an IFS with attractor $A \in H(X)$. Let $F : X \to \mathbb{C}$ be a complex-valued function over X. The expectation of F over A, $\langle F(x) \rangle_{x \in A}$, is defined as:

$$\langle F(x) \rangle_{x \in A} := \lim_{j \to \infty} \frac{1}{m^j} \sum_{k_1=1}^m \sum_{k_2=1}^m \cdots \sum_{k_j=1}^m F\left(f_{k_j} \circ \cdots \circ f_{k_2} \circ f_{k_1}(x_0)\right)$$

(2)

for any $x_0 \in A$, when the limit exists.

Expectations over IFSs

Definition (Fundamental definition of expectation)

Let $\{X; f_1, \ldots, f_m\}$ be an IFS with attractor $A \in H(X)$. Let $F : X \to \mathbb{C}$ be a complex-valued function over X. The expectation of F over A, $\langle F(x) \rangle_{x \in A}$, is defined as:

$$\langle F(x) \rangle_{x \in A} := \lim_{j \to \infty} \frac{1}{m^j} \sum_{k_1=1}^m \sum_{k_2=1}^m \cdots \sum_{k_j=1}^m F\left(f_{k_j} \circ \cdots \circ f_{k_2} \circ f_{k_1}(x_0)\right)$$

(2)

for any $x_0 \in A$, when the limit exists.

Intuitively we evaluate the expectation over ever-finer pre-fractal sets and examine the limit as the resolution grows ever-finer. This definition is more elegantly stated using code-space ideas.

Code Space

Definition

Given an IFS $\{X; f_1, \ldots, f_m\}$, the associated code space Σ_m is defined as:

$$\Sigma_m := \{ \sigma = \sigma_1 \sigma_2 \dots : \sigma_i \in \{0, 1, \dots, m-1\} \quad \forall i \in \mathbb{N} \}$$

Code Space

Definition

Given an IFS $\{X; f_1, \ldots, f_m\}$, the associated code space Σ_m is defined as:

$$\Sigma_m := \{ \sigma = \sigma_1 \sigma_2 \dots : \sigma_i \in \{0, 1, \dots, m-1\} \quad \forall i \in \mathbb{N} \}$$

The code space metric is defined by:

$$d_{\Sigma}(\sigma,\omega) = d_{\Sigma}(\sigma_1\sigma_2\ldots,\omega_1\omega_2\ldots) := \sum_{k=1}^{\infty} \frac{|\sigma_k - \omega_k|}{(m+1)^k}$$

Definition (Fundamental definition of expectation (using code-space))

Let $\{X; f_1, \ldots, f_m\}$ be an IFS with attractor $A \in H(X)$. Let $F : X \to \mathbb{C}$ be a complex-valued function over X. The expectation of f over A, $\langle f(x) \rangle_{x \in A}$, is defined as:

$$\langle F(x) \rangle_{x \in A} := \lim_{j \to \infty} \frac{1}{m^j} \sum_{\sigma_j \in \Sigma_m(j)} F(\phi(\sigma_j))$$

when the limit exists.

Corollary

(Fundamental definition of separation (using code-space)) Let $\{X; f_1, \ldots, f_m\}$ be an IFS with attractor $A \in H(X)$. Let $F : X \to \mathbb{C}$ be a complex-valued function over X. The separation expectation of F over A, $\langle F(x - y) \rangle_{x,y \in A}$, is defined as:

$$\langle F(x,y) \rangle_{x,y \in A} := \lim_{j \to \infty} \frac{1}{m^{2j}} \sum_{\sigma_j \in \Sigma_m(j)} \sum_{\tau_j \in \Sigma_m(j)} F\left(\phi(\sigma_j - \tau_j)\right)$$

when the limit exists.

The invariant IFS measure

Definition (Falconer) A measure μ on X is invariant for a mapping $f: X \to X$ if for every subset $B \subset X$ we have

$$\mu\left(f^{-1}(A)\right)=\mu\left(A\right)$$

A measure μ on X is normalised if $\mu(X) = 1$.

Definition

Let B be a Borel subset of a metric space (X, d). The residence measure is defined as:

$$\mu(B) := \lim_{n \to \infty} \frac{1}{n} \# \left\{ k : f^k(x) \in B, \ 1 \le k \le n \right\}$$
(3)

Ergodic theory shows that this limit exists and is identical for μ -almost all points in the basin of attraction.

The invariant IFS measure

Corollary

The residence measure is an invariant measure over the attractor of any IFS.

The invariant IFS measure

Theorem (Elton's Theorem - special case) Let (X, d) be a compact metric space and let $\{X; w_1, \ldots, w_m; c_1, \ldots, c_m; p_1, \ldots, p_m\}$ be a hyperbolic IFS. Let $\{x_n\}_{n=0}^{\infty}$ denote a chaos game orbit of the IFS starting at $x_0 \in X$, that is, $x_m = w_{\sigma_n} \circ \ldots \circ w_{\sigma_1}(x_0)$ where the maps are chosen independently according to the probabilities p_1, \ldots, p_m for $n \in \mathbb{N}$. Let μ be the unique invariant measure for the IFS. Then, with probability 1 (i.e. for all code sequences excepting a set having probability 0),

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(x_k) = \int_X f(x) \mathrm{d}\mu(x) \tag{4}$$

Elton's Theorem

Corollary

(Barnsley) Let B be a Borel subset of X and let $\mu(B') = 0$ (where B' is the boundary of B. Then, with probability 1,

$$\mu(B) = \lim_{n \to \infty} \frac{\#\{x_0, x_1, \dots, x_n\} \cap B}{n+1}$$
(5)

for all $x_0 \in X$.

Elton's Theorem

Corollary

(Barnsley) Let B be a Borel subset of X and let $\mu(B') = 0$ (where B' is the boundary of B. Then, with probability 1,

$$\mu(B) = \lim_{n \to \infty} \frac{\#\{x_0, x_1, \dots, x_n\} \cap B}{n+1}$$
(5)

for all $x_0 \in X$.

It follows that our definition of the expectation leads naturally to the equivalence of integration with respect to the residence measure. Elton's Theorem and Barnsley's corollary implies a similarly fast Chaos-Game algorithms for numerical estimation of the residence measure of Borel sets, as well as our expectations.

Corollary

Let $\{X; f_1, f_2, ..., f_N\}$ be a contractive IFS with attractor $A \in \mathbb{H}(X)$. Given a complex-valued function $F : X \to \mathbb{C}$, the expectation of F over A is given by the integral:

$$\langle f(x) \rangle_{x \in A} = \int_X f(x) \mathrm{d}\mu(x)$$
 (6)

If the IFS is non-overlapping, the measure separates as follows:

Proposition (Measure scaling relation)

The invariant measure μ on a subset S of the attractor A of a totally-disconnected IFS satisfies the scaling relation:

$$\mu(S) = \sum_{k=1}^{m} \mu(f_k(S))$$
 (7)

Functional equations

The functional equations for expectations are:

Proposition (Function equations for expectations)

For points x, y in the attractor A of a non-overlapping IFS, the expectations for a complex-valued function F satisfy the functional equations (respectively pertaining to the box-integrals B and Δ):

$$\langle F(x) \rangle = \frac{1}{m} \sum_{j=1}^{m} \langle F(f_j(x)) \rangle$$
 (8)

$$\langle F(x-y)\rangle = \frac{1}{m^2} \sum_{j=1}^m \sum_{k=1}^m \langle F(f_j(x) - f_k(y))\rangle$$
(9)

Examples

$$B_2=\frac{10}{27}$$

$$B_2 = \frac{10}{27}$$

$$B_2 = \frac{10}{27}$$

$$\Delta_2 = \frac{8}{27}$$

$$B_2 = \frac{4}{9}$$

$$B_2 = \frac{4}{9}$$

$$B_2 = \frac{4}{9}$$

$$\Delta_2 = \frac{2}{q}$$

$$B_2 = \frac{1}{3}$$

$$B_2 = \frac{1}{3}$$

$$B_2 = \frac{1}{3}$$

 $\Delta_2=\frac{4}{27}$

$$B_2 = \frac{2049440803137681904}{580160660775546421} \approx 3.5$$

$$\Delta_2 = \frac{1561818604387599983932186}{541130352321871535527225} \ \approx 2.9$$

Future directions

- Applications to Daubechies wavelets
- Evaluation of odd moments
- NMR diffusion studies

Thanks!

