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Our grade school 
triangle experience:

The sum of all three angles at the vertices of a triangle 
is equal to 1/2.

θ1

θ2

θ3

θ1 + θ2 + θ3 = 1
2
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How does this elementary result extend 
to higher dimensions?  

1.  What is a polygon in higher dimensions?

2.  What is an angle in higher dimensions?

3.  How do these relations among angles                 
extend to higher dimensions?

polygon

angle

relations among angles
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Cone K
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θ

vertex

Cone K

An angle can be thought of intuitively 
as the intersection of a cone with a 
small sphere, centered at the vertex of 
the cone. 
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A cone K ⊂ Rd is the nonnegative real span

of a finite number of vectors in Rd.

That is, a cone is defined by

K = {λ1w1 + · · · + λdwd| all λj ≥ 0},

where we assume that the edge vectors w1, . . . , wd

are linearly independent in Rd.
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Example:  a 3-dimensional cone.

Cone K

vertex v
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How do we describe a 
higher dimensional 
angle analytically, 

though?

Sinai Robins rsinai@ntu.edu.sg



A nice analytic description is 
given by:

A two dim’l angle =
∫

K e−π(x2+y2)dxdy

The solid angle at the vertex of a cone K is

ωK =
∫

K e−π||x||2dx.
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A solid angle in dimension d is equivalently:

   The proportion of a sphere, centered at the vertex of a cone, 
which intersects the cone.

      The probability that a randomly chosen point in Euclidean 
space, chosen from a fixed sphere centered at the vertex of K, 

will lie inside K.
  

1.

2.

3. A solid angle =
∫

K e−π||x||2dx

The volume of a spherical polytope.4.
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Example:  defining the solid angle 
at a vertex of a 3-dimensional cone.

v

Cone Kv
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Example:  defining the solid angle 
at a vertex of a 3-dimensional cone.

sphere centered at vertex v

v

Cone Kv
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Example:  defining the solid angle 
at a vertex of a 3-dimensional cone.

   

this is a geodesic 
triangle on the 

sphere, 
representing the 

solid angle at vertex 

v.      

sphere centered at vertex v

v

Cone Kv
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The moral:  a solid 
angle in higher 

dimensions is really 
the volume of a 

spherical polytope.
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We need to extend the notion of a solid angle at a vertex
of a cone to the more general notion of a solid angle at
ANY point, relative to any polytope P .

Given any convex polytope P , we define the solid angle

This can also be thought of as the proportion of a small sphere,
centered at x, that lies inside P .

ωP (x) = lim
ε→0

vol(Sε(x) ∩ P )
vol(Sε)

where Sε is a sphere of radius ε, centered at x.
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xvertex

x

When F is an edge of a triangle, we get
ωP (x) = 1

2 .

When F is a vertex of a triangle, we get
ωP (x) = θ.

Example. Let P be a triangle.

F

P
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Definition.   The solid angle of a 
face  F  of a polytope P is given 
by the proportion of a small 
sphere, centered at any point

x ∈ the relative interior of F.
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Jorgen Gram

1850-1916
Born in Denmark
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Yes, the same Gram, but a different 
theorem.
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Theorem. (J. Gram, circa 1860) 

(The Gram relations)

Given a convex polytope P,  we have the following linear equality 
for the solid angles of its faces:

∑

F⊂P

(−1)dimF ωF = 0.

Note: all sums include the face F = P .
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Why is the Gram theorem really a 
d-dimensional extension of our           
2-dimensional elementary school 
theorem?   

Sinai Robins rsinai@ntu.edu.sg



vertex

ωF = 1/2

when F = P we get

For a triangle P , the Gram relations give

0 = (−1)0(ωv1 + ωv2 + ωv3) + (−1)1(1/2 + 1/2 + 1/2) +(−1)2(1)

= θ1 + θ2 + θ3 − 1/2.

ωP = 1.

When F is an edge, we get

When F is a vertex, we get ωF = θ.
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For a 3-simplex P, we have the following picture for the solid 
angles of one of its edges: 

Example of a solid angle of a face F - an edge in this case -
relative to a polytope P .
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To help us analyze solid angles, 
We have introduced the following 
Conic theta function for a any 
cone K:

Definition.

θK(τ) =
∑

m∈Zd∩K

eπiτ ||m||2 ,

where τ is in the upper complex half plane.
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Why do we define the conic theta function in this 
way? 

One strong motivation comes from simply 
discretizing the integral that defines a solid angle! 
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We observe that there is a simple but 
very useful analytic link between 
solid angles and these conic theta 
functions, given by:

For any cone K with vertex v,

θK(iε) ≈ ε−d/2ωK(v),

asymptotically as ε→ 0.

Lemma.
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Another motivator / teaser :  There are 
many identities among these conic 
theta functions.   For example:

     (R)    For any convex polytope P,Theorem.

θP (iε) =
∑

F⊂P

(−1)dimF θKF (iε)

where KF is the tangent cone to the face F .
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What are Tangent 
cones ?

A quick tutorial
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Example:  If the face F is a vertex, what does the tangent 
cone at the vertex look like?

Face = v, a vertex
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y1

Example:  If the face F is a vertex, what does the tangent 
cone at the vertex look like?

Face = v, a vertex
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y1
y2

Face = v, a vertex
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y1
y2

y5

Face = v, a vertex
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KF

y3

y1
y2

y4

y5

Face = v, a vertex

KF
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KF

Face = v, a vertex

KFKF
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Intuitively, the tangent cone of F is the union of all rays that 
have a base point in F and point ‘towards P’.  

We note that the tangent cone of F contains the affine span of 
the face F.   

Definition. The tangent cone KF of a face F ⊂ P is
defined by

KF = {x + λ(y − x) |x ∈ F, y ∈ P, and λ ≥ 0}.
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Example.   when the face is a 1-dimensional edge of a polygon, 
its tangent cone is a half-plane.

F is an edge

KF

Sinai Robins rsinai@ntu.edu.sg



KFKF
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tangent cones of any convex closed polytope as follows:

Theorem. (Brianchon-Gram)

1P =
∑

F⊂P

(−1)dimF 1KF

where 1KF is the indicator function of the tangent
cone to F .

It has an Euler charactistic flavor, and it relates all of the

There is a wonderful and very useful identity, known as
the “Brianchon-Gram” identity.
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Remarks. The Brianchon 
identity for indicator 
functions allows us to 
transfer the computation of 
a function f over a polytope 
P to the local computation of 
f over each tangent cone of P.
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Definition:    A d-dimensional polytope 
enjoying the property that each of its vertices 
shares an edge with exactly d other vertices 
is called a simple polytope.
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Example of a simple polytope:  
The dodecahedron
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Example of a non-simple polytope:  
The icosahedron
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Definition.  The Fundamental Domain of 
a cone K is defined by a parallelepiped.

whereas by comparison, the cone is defined by

Π := {λ1ω1 + · · · + λdωd | all 0 ≤ λj ≤ 1},

K := {λ1ω1 + · · · + λdωd | all 0 ≤ λj}.
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Example.  In the plane, we have:

The fundamental domain of a two dimensional cone K.
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One ultimate goal:  

to find a nice, computably efficient 
description of each solid angle       
as a function of the given data (the 
rational vertices) of the rational 
polytope.

ωF
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Definition.  We define the Gauss 
Sum of a cone K by 

SK(p, q) :=
∑

n∈qΠ∩Zd

e2πi p
q ||n||2 ,

where p, q are any two positive integers, and where
Π is a fundamental domain for the cone K.
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For any convex, simple rational polytope P, 

We arrive at a non-linear extension of the 
classical Gram relations, using polyhedral 
Gauss sums:

Theorem. (R)

∑

F⊂P

(−1)dim F ωF

{
SKF (p, q)
det KF

}
= 0.
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 Thank You

Reference:   www.mathematicaguidebooks.org/soccer/
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