THE FUNDAMENTAL QUADRANGLE

relating quantifications of various aspects of a random variable

 $\begin{array}{ccc} \mathsf{risk} \ \mathcal{R} \ \longleftrightarrow \ \mathcal{D} \ \mathsf{deviation} \\ \mathsf{optimization} & \uparrow \ \mathcal{S} \ \uparrow & \mathsf{estimation} \\ \mathsf{regret} \ \mathcal{V} \ \longleftrightarrow \ \mathcal{E} \ \mathsf{error} \end{array}$

- **Lecture 1:** optimization, the role of \mathcal{R}
- **Lecture 2:** estimation, the roles of \mathcal{E} , \mathcal{D} , \mathcal{S}
- Lecture 3: tying both together along with \mathcal{V} and duality

Lecture 1

QUANTIFICATIONS OF RISK IN STOCHASTIC OPTIMIZATION

R. T. Rockafellar University of Washington, Seattle University of Florida, Gainesville

Newcastle, Australia

February, 2010

Decisions (optimal?) must be taken before the facts are all in:

- A bridge must be built to withstand floods, wind storms or earthquakes
- A portfolio must be purchased with incomplete knowledge of how it will perform
- A product's design constraints must be viewed in terms of "safety margins"

What are the consequences for optimization? How may this affect the way problems are **formulated**? A standard form of optimization problem without uncertainty:

minimize $c_0(x)$ over all $x \in S$ satisfying $c_i(x) \leq 0, i = 1, ..., m$ for a set $S \subset \mathbb{R}^n$ and functions $c_i : S \mapsto \mathbb{R}$

Incorporation of **future states** $\omega \in \Omega$ in the model: the decision x must be taken before ω is known

Choosing $x \in S$ no longer fixes numerical values $c_i(x)$, but only fixes **functions on** Ω : $\underline{c}_i(x) : \omega \mapsto c_i(x, \omega), \quad i = 0, 1, \dots, m$

Example: Linear Programming Context

minimize $c_0(x)$ over all $x \in S$ satisfying $c_i(x) \le 0, i = 1, ..., m$

Linear programming problem:

 $c_i(x) = a_{i1}x_1 + \cdots + a_{in}x_n - b_i$

minimize $a_{01}x_1 + \cdots + a_{0n}x_n - b_0$ over $x = (x_1, \dots, x_n) \in S$ subject to $a_{i1}x_1 + \cdots + a_{in}x_n - b_i \leq 0$ for $i = 1, \dots, m$, where $S = \{x \mid x_1 \geq 0, \dots, x_n \geq 0 \&$ other conditions? $\}$

Effect of uncertainty:

$$c_i(x,\omega) = a_{i1}(\omega)x_1 + \cdots + a_{in}(\omega)x_n - b_i(\omega)$$

There is **no single clear answer** to the question of how then to reconstitute the optimization **objective** and the **constraints**!

Stochastic Framework — Random Variables

Future state space Ω modeled with a probability structure: (Ω, \mathcal{F}, P), P = some probability measure

Functions $X : \Omega \to R$ are interpreted as **random variables**: cumulative distribution function $F_X : (-\infty, \infty) \to [0, 1]$ $F_X(z) = \operatorname{prob} \{ \omega \mid X(\omega) \leq z \}$ expected value EX = mean value = $\mu(X)$ variance $\sigma^2(X) = E[(X - \mu(X))^2]$, standard deviation $\sigma(X)$ technical restriction imposed here: $X \in \mathcal{L}^2$ meaning $E[X^2] < \infty$

The functions $\underline{c}_i(x) : \omega \to c_i(x, \omega)$ are placed now in this picture: choosing $x \in S$ yields random variables $\underline{c}_0(x), \underline{c}_1(x), \dots, \underline{c}_m(x)$

Some Traditional Approaches

Recapturing optimization in the face of $\underline{c}_i(x) : \omega \to c_i(x, \omega)$

Approach 1: guessing the future

- \bullet identify $\bar{\omega}\in\Omega$ as the "best estimate" of the future
- minimize over $x \in S$:

 $c_0(x,ar{\omega})$ subject to $c_i(x,ar{\omega}) \leq 0, \ i=1,\ldots,m$

pro/con: simple and attractive, but dangerous—no hedging

Approach 2: worst-case analysis, "robust" optimization

- focus on the worst that might come out of each $\underline{c}_i(x)$:
- minimize over $x \in S$:

 $\sup_{\omega\in\Omega}c_0(x,\omega) \text{ subject to } \sup_{\omega\in\Omega}c_i(x,\omega)\leq 0, \ i=1,\ldots,m$

• pro/con: avoids probabilities, but expensive—maybe infeasible

Approach 3: relying on means/expected values

- focus on average behavior of the random variables $\underline{c}_i(x)$
- minimize over $x \in S$:

 $\mu(\underline{c}_0(x)) = E_\omega c_0(x,\omega)$ subject to

- $\mu(\underline{c}_i(x)) = E_{\omega}c_i(x,\omega) \leq 0, \ i = 1, \dots, m$
- pro/con: common for objective, but foolish for constraints?

Approach 4: safety margins in units of standard deviation

 \bullet improve on expectations by bringing standard deviations into consideration

- minimize over $x \in S$: for some choice of coefficients $\lambda_i > 0$ $\mu(\underline{c}_0(x)) + \lambda_0 \sigma(\underline{c}_0(x))$ subject to $\mu(\underline{c}_i(x)) + \lambda_i \sigma(\underline{c}_i(x)) \le 0, i = 1, ..., m$
- pro/con: looks attractive, but a serious flaw will emerge

Approach 5: specifying probabilities of compliance

- choose probability levels $\alpha_i \in (0,1)$ for $i = 0, 1, \dots, m$
- find lowest z such that, for some $x \in S$, one has $prob \{ \underline{c}_0(x) \le z \} \ge \alpha_0,$ $prob \{ \underline{c}_i(x) \le 0 \} \ge \alpha_i \text{ for } i = 1, \dots, m$
- pro/con: popular and appealing, but flawed and controversial
 - no account is taken of the seriousness of violations
 - technical issues about the behavior of these expressions

Example: with $\alpha_0 = 0.5$, the **median** of $\underline{c}_0(x)$ would be minimized

Traditional usage: problems of reliable design in engineering

Quantification of Risk

How can the "risk" be measured in a random variable X? orientation: $X(\omega)$ stands for a "cost" or loss negative costs correspond to gains/rewards

The idea to be pursued here:

capture the "risk" in X by a **numerical surrogate** $\mathcal{R}(X)$ This leads to considering functionals $\mathcal{R} : X \to \mathcal{R}(X)$ on the space of random variables $\mathcal{R} =$ "risk quantifier" = "risk measure"

A Systematic Approach to Uncertainty in Optimization

When numerical values $c_i(x)$ become random variables $\underline{c}_i(x)$:

- choose risk quantifiers \mathcal{R}_i for i = 0, 1, ..., m
- define the functions \bar{c}_i on \mathbb{R}^n by $\bar{c}_i(x) = \mathcal{R}_i(\underline{c}_i(x))$, and then
- minimize $\overline{c}_0(x)$ over $x \in S$ subject to $\overline{c}_i(x) \leq 0$, $i = 1, \dots, m$.

What axioms for numerical surrogates $\mathcal{R}(X) \in (-\infty, \infty]$?

Definition of coherency

 $\begin{array}{l} \mathcal{R} \text{ is a coherent measure of risk in the basic sense if} \\ (R1) \quad \mathcal{R}(\mathcal{C}) = \mathcal{C} \text{ for all constants } \mathcal{C} \\ (R2) \quad \mathcal{R}((1-\lambda)X + \lambda X') \leq (1-\lambda)\mathcal{R}(X) + \lambda \mathcal{R}(X') \\ & \quad \text{for } \lambda \in (0,1) \quad (\text{convexity}) \\ (R3) \quad \mathcal{R}(X) \leq \mathcal{R}(X') \text{ when } X \leq X' \quad (\text{monotonicity}) \\ (R4) \quad \mathcal{R}(X) \leq c \text{ when } X_k \rightarrow X \text{ with } \mathcal{R}(X_k) \leq c \quad (\text{closedness}) \\ (R5) \quad \mathcal{R}(\lambda X) = \lambda \mathcal{R}(X) \text{ for } \lambda > 0 \quad (\text{positive homogeneity}) \\ \mathcal{R} \text{ coherent in the extended sense: axiom (R5) dropped} \end{array}$

(from ideas of Artzner, Delbaen, Eber, Heath 1997/1999)

 $\begin{array}{l} (\mathsf{R1})+(\mathsf{R2}) \Rightarrow \mathcal{R}(X+C) = \mathcal{R}(X) + C \text{ for all } X \text{ and constants } C \\ (\mathsf{R2})+(\mathsf{R5}) \Rightarrow \mathcal{R}(X+X') \leq \mathcal{R}(X) + \mathcal{R}(X') \quad \text{(subadditivity)} \end{array}$

Associated Criteria for Risk Acceptability

For a "cost" random variable X, to what extent should outcomes $X(\omega) > 0$, in constrast to outcomes $X(\omega) \le 0$, be tolerated? preferences must be articulated!

Preference-based definition of acceptance

Given a choice of a risk measure \mathcal{R} : the risk in X is deemed **acceptable** when $\mathcal{R}(X) \leq 0$

 $\begin{array}{ll} \mbox{from (R1):} & \mathcal{R}(X) \leq c & \Longleftrightarrow & \mathcal{R}(X-c) \leq 0 \\ \mbox{from (R3):} & \mathcal{R}(X) \leq \sup X \mbox{ for all } X, \\ & \mbox{ so } X \mbox{ is always acceptable when } \sup X \leq 0 \end{array}$

The Role of Coherency in Optimization

Reconstituted optimization problem:

minimize $\bar{c}_0(x)$ over $x \in S$ with $\bar{c}_i(x) \leq 0$ for i = 1, ..., mwhere $\bar{c}_i(x) = \mathcal{R}_i(\underline{c}_i(x))$ for $\underline{c}_i(x) : \omega \to c_i(x, \omega)$

Assumption for now: each \mathcal{R}_i is **coherent** in the **basic** sense

Key properties associated with coherency (a) (preservation of convexity) $c_i(x, \omega)$ convex in $x \implies \bar{c}_i(x)$ convex in x(b) (preservation of certainty) $c_i(x, \omega)$ independent of $\omega \implies \bar{c}_i(x)$ has that same value (c) (insensitivity to scaling) optimization is unaffected by rescaling of the units of the c_i 's

(a) and (b) still hold for coherent measures in the extended sense

Coherency or Its Lack in Traditional Approaches

The case of Approach 1: guessing the future

 $\mathcal{R}_i(X) = X(ar{\omega})$ for a choice of $ar{\omega} \in \Omega$ with prob > 0

 \mathcal{R}_i is **coherent**—but open to criticism

 $\underline{c}_i(x)$ is deemed to be risk-acceptable if merely $c_i(x, \overline{\omega}) \leq 0$

The case of Approach 2: worst case analysis

 $\mathcal{R}_i(X) = \sup X$

 \mathcal{R}_i is **coherent**—but very conservative

 $\underline{c}_i(x)$ is risk-acceptable only if $c_i(x,\omega) \leq 0$ with prob = 1

The case of Approach 3: relying on expectations

 $\mathcal{R}_i(X) = \mu(X) = EX$

 \mathcal{R}_i is **coherent**—but perhaps too "feeble"

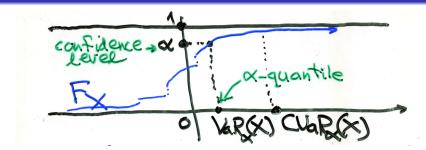
 $\underline{c}_i(x)$ is risk-acceptable as long as $c_i(x,\omega) \leq 0$ on average

The case of Approach 4: standard deviation units as safety margins $\mathcal{R}_i(X) = \mu(X) + \lambda_i \sigma(X)$ for some $\lambda_i > 0$ \mathcal{R}_i is **not coherent**: the monotonicity axiom (R3) fails! $\implies \underline{c}_i(x)$ could be deemed more costly than $\underline{c}_i(x')$ even though $c_i(x, \omega) < c_i(x', \omega)$ with probability 1 $\underline{c}_i(x)$ is risk-acceptable as long as the mean $\mu(\underline{c}_i(x))$ lies below 0 by at least λ_i times the amount $\sigma(\underline{c}_i(x))$

The case of Approach 5: specifying probabilities of compliance

 $\mathcal{R}_{i}(X) = q_{\alpha_{i}}(X) \text{ for some } \alpha_{i} \in (0, 1), \text{ where} \\ q_{\alpha_{i}}(X) = \alpha_{i}\text{-quantile in the distribution of } X \\ (\text{to be explained}) \\ \mathcal{R}_{i} \text{ is$ **not coherent** $: the convexity axiom (R2) fails!} \\ \implies \text{for portfolios, this could run counter to "diversification"} \\ \underline{c}_{i}(x) \text{ is risk-acceptable as long as } c_{i}(x, \omega) \leq 0 \text{ with prob } \geq \alpha_{i} \end{cases}$

Quantiles and Conditional Value-at-Risk



 $\begin{array}{lll} \alpha \text{-quantile for } X \colon & q_{\alpha}(X) = \min \left\{ z \mid F_{X}(z) \geq \alpha \right\} \\ \text{value-at-risk:} & \operatorname{VaR}_{\alpha}(X) \text{ same as } q_{\alpha}(X) \\ \text{conditional value-at-risk:} & \operatorname{CVaR}_{\alpha}(X) = \alpha \text{-tail expectation of } X \\ &= \frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{VaR}_{\beta}(X) d\beta & \geq & \operatorname{VaR}_{\alpha}(X) \end{array}$

THEOREM $\mathcal{R}(X) = \text{CVaR}_{\alpha}(X)$ is a **coherent** measure of risk!

 $\operatorname{CVaR}_{\alpha}(X) \nearrow \sup X$ as $\alpha \nearrow 1$, $\operatorname{CVaR}_{\alpha}(X) \searrow EX$ as $\alpha \searrow 0$

CVaR Versus VaR in Modeling

$\operatorname{prob}\left\{X \leq \mathbf{0}\right\} \leq \alpha \iff q_{\alpha}(X) \leq \mathbf{0} \iff \operatorname{VaR}_{\alpha}(X) \leq \mathbf{0}$

Approach 5 recast: specifying probabilities of compliance

- focus on value-at-risk for the random variables $\underline{c}_i(x)$
- minimize $\operatorname{VaR}_{\alpha_0}(\underline{c}_0(x))$ over $x \in S$ subject to $\operatorname{VaR}_{\alpha_i}(\underline{c}_i(x)) \leq 0, i = 1, \dots, m$
- pro/con: seemingly natural, but "incoherent" in general

Approach 6: safeguarding with conditional value-at-risk

- conditional value-at-risk instead of value-at-risk for each $\underline{c}_i(x)$
- minimize $\operatorname{CVaR}_{\alpha_0}(\underline{c}_0(x))$ over $x \in S$ subject to $\operatorname{CVaR}_{\alpha_i}(\underline{c}_i(x)) \leq 0, \ i = 1, \dots, m$
- pro/con: coherent! also more cautious than value-at-risk

extreme cases: " $\alpha_i = 0$ " ~ expectation, " $\alpha_i = 1$ " ~ supremum

Minimization Formula for VaR and CVaR

$$\operatorname{CVaR}_{\alpha}(X) = \min_{C \in \mathbb{R}} \left\{ C + \frac{1}{1-\alpha} E\left[\max\{0, X - C\} \right] \right\}$$
$$\operatorname{VaR}_{\alpha}(X) = \operatorname{lowest} C \text{ in the interval giving the min}$$

Application to CVaR optimization: convert a problem like

minimize $\operatorname{CVaR}_{\alpha_0}(\underline{c}_0(x))$ over $x \in S$ subject to $\operatorname{CVaR}_{\alpha_i}(\underline{c}_i(x)) \leq 0, \ i = 1, \dots, m$

into a problem for $x \in S$ and auxiliary variables C_0, C_1, \ldots, C_m :

minimize
$$C_0 + \frac{1}{1-\alpha_0} E\left[\max\{0, \underline{c}_0(x) - C_0\}\right]$$
 while requiring
 $C_i + \frac{1}{1-\alpha_i} E\left[\max\{0, \underline{c}_i(x) - C_i\}\right] \le 0, \quad i = 1, \dots, m$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Further Modeling Possibilities

(a) If
$$\mathcal{R}_1, \ldots, \mathcal{R}_r$$
 are coherent and $\lambda_1 > 0, \ldots, \lambda_r > 0$ with $\lambda_1 + \cdots + \lambda_r = 1$, then
 $\mathcal{R}(X) = \lambda_1 \mathcal{R}_1(X) + \cdots + \lambda_r \mathcal{R}_r(X)$ is coherent
(b) If $\mathcal{R}_1, \ldots, \mathcal{R}_r$ are coherent, then
 $\mathcal{R}(X) = \max \{ \mathcal{R}_1(X), \ldots, \mathcal{R}_r(X) \}$ is coherent

Example: $\mathcal{R}(X) = \lambda_1 \operatorname{CVaR}_{\alpha_1}(X) + \cdots + \lambda_r \operatorname{CVaR}_{\alpha_r}(X)$

Approach 7: safeguarding with CVaR mixtures

The $\rm CVaR$ approach already considered can be extended by replacing single $\rm CVaR$ expressions with weighted combinations

For any nonnegative **weighting** measure λ on (0, 1), a coherent measure of risk (in the basic sense) is given by

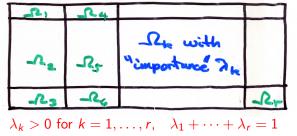
 $\mathcal{R}(X) = \int_0^1 \operatorname{CVaR}_{\alpha}(X) d\lambda(\alpha)$

Spectral representation

Associate with λ the **profile** function $\varphi(\alpha) = \int_0^{\alpha} [1 - \beta]^{-1} d\lambda(\beta)$ Then, as long as $\varphi(1) < \infty$, the above \mathcal{R} has the expression $\mathcal{R}(X) = \int_0^1 \operatorname{VaR}_{\beta}(X)\varphi(\beta) d\beta$

Risk Measures From Subdividing the Future

"robust" optimization modeling revisited with $\boldsymbol{\Omega}$ subdivided



$$\mathcal{R}(X) = \lambda_1 \sup_{\omega \in \Omega_1} X(\omega) \cdots + \lambda_r \sup_{\omega \in \Omega_r} X(\omega)$$
 is **coherent**

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model minimize $\sup_{\omega \in \Omega} c_0(x, \omega)$ subject to $\sup_{\omega \in \Omega} c_i(x, \omega) \le 0$, i = 1, ..., mby **distributing** each supremum **over subregions** of Ω , as above [1] R. T. Rockafellar (2007), "Coherent approaches to risk in optimization under uncertainty," Tutorials in Operations Research INFORMS 2007, 39–61.

[2] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath (1999), "Coherent measures of risk," *Mathematical Finance* 9, 203–227.

[3] H. Föllmer, A. Schied (2002, 2004), Stochastic Finance.

[4] R.T. Rockafellar, S.P. Uryasev (2000), "Optimization of Conditional Value-at-Risk," *Journal of Risk* 2, 21–42.

[5] R.T. Rockafellar, S.P. Uryasev,, "Conditional value-at-risk for general loss distributions," *Journal of Banking and Finance* 26, 1443–1471.

[1], [4], [5], downloadable:

www.math.washington.edu/~rtr/mypage.html