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Building Further in the Stochastic Framework

Probability space: (Ω,F ,P), elements ω are “future states”

random variables: X : Ω→ IR, X ∈ L2(Ω,F ,P)
typical orientation: X (ω) = some “cost” or “loss”

Quantification of risk: R(X ) = numerical surrogate for X
R : L2 → (−∞,∞] is then a “risk measure”

Complementary idea: D(X ) = assessment of nonconstancy of X
D : L2 → [0,∞] is then a “deviation measure”

standard deviation as a basic example: D(X ) = σ(X )

Why generalize? motivations in finance, in particular

• asymmetry could be beneficial, D(−X ) 6= D(X )?
• promotion of coherency in risk (connections will emerge)

Closely related notion: E(X ) = assessment of nonzeroness of X
E : L2 → [0,∞] is then an “error measure”



Quantification of Uncertainty

functionals D : X → D(X ) ∈ [0,∞] for X ∈ L2(Ω,F ,P)

Axioms for deviation from constancy

D is a measure of deviation in the basic sense if

(D1) D(X ) = 0 for X ≡ C constant, D(X ) > 0 otherwise

(D2) D((1− λ)X + λX ′) ≤ (1− λ)D(X ) + λD(X ′)
for λ ∈ (0, 1) (convexity)

(D3) D(X ) ≤ c when Xk → X with D(Xk) ≤ c (closedness)

(D4) D(λX ) = λD(X ) for λ > 0 (positive homogeneity)

Deviation measures in the extended sense: (D4) dropped

=⇒ D actually has D(X + C ) = D(X ) for all constants C



Initial Examples of Deviation Measures

notation: X = X+ − X− for X+ = max{X , 0}, X− = max{−X , 0}

Standard deviation and semideviations

• σ(X ) = ||X − EX ||2
• σ+(X ) = ||[X − EX ]+||2 and σ−(X ) = ||[X − EX ]−||2

Range-based deviation measures

• D(X ) = supX − inf X
• D(X ) = supX − EX and D(X ) = EX − inf X

Recall that the Lp norms on L2(Ω,F ,P) are well defined

Lp deviations and semideviations

• D(X ) = ||X − EX ||p
• D(X ) = ||[X − EX ]+||p and D(X ) = ||[X − EX ]−||p



Motivations Coming From Finance

Y1, . . . ,Ym = rates of return of various financial instruments
x1, . . . , xm = weights of these instruments in a portfolio

weighting constraints: (x1, . . . , xm) ∈ S (various versions)
Y (x1, . . . , xm) = x1Y1 + · · ·+ xmYm = portfolio rate of return

Classical portfolio problem

Choose the weighting vector (x1, . . . , xm) ∈ S so as to minimize
σ(Y (x1, . . . , xm) ) subject to having µ(Y (x1, . . . , xm) ) ≥ c
c = some target level of return, treated parametrically

Issues of contention:
• σ penalizes above-average returns like below-average returns
• the µ constraint may be inappropriately feeble

Innovations to explore: with a switch from gains to losses
• replace σ(Y (x1, . . . , xm) ) by D(−Y (x1, . . . , xm) )
• replace µ(Y (x1, . . . , xm) ) = c by R(−Y (x1, . . . , xm) ) ≤ −c



Estimation Through Linear Regression

Theme: linear approximation of a random variable Y by some
other random variables X1, . . . ,Xn and a constant term

Y ≈ c0 + c1X1 + c2X2 + · · ·+ cnXn

“best” coefficients c0, c1, . . . , cn are to be determined

Existing approaches:

Classical regression (“least-squares” method)
Quantile regression (for estimating quantiles/percentiles)
Modified least squares (Huber approach to outliers)

Issues motivating additional work :

Should “risk preferences” dictate the form of approximation?
Underestimates worse than overestimates for Y = loss/cost?



Quantification of Error in Approximation

Orientation: X (ω) now refers to an outcome desired to be 0

Error measures: E : L2 → [0,∞]
E(X ) quantifies the overall “nonzero-ness” in X

Error axioms

E is a measure of error in the basic sense if

(E1) E(0) = 0, E(X ) > 0 when X 6= 0,
E(C ) <∞ for all constants C

(E2) E((1− λ)X + λX ′) ≤ (1− λ)E(X ) + λE(X ′)
for λ ∈ (0, 1) (convexity)

(E3) E(X ) ≤ c when Xk → X with E(Xk) ≤ c (closedness)

(E4) E(λX ) = λE(X ) for λ > 0 (positive homogeneity)

Error measures in the extended sense: (E4) dropped



Some Examples of Error Measures

E : L2 → [0,∞], basic if positively homogeneous

A broad class of error messages in the basic sense

E(X ) = ||a[X ]+ + b[X ]−||p with a > 0, b > 0, p ∈ [1,∞]

Some specific instances:

E(X ) = ||X ||p when a = 1 and b = 1

E(X ) = E
{

(1− α)−1X+ − X
}

when a = (1− α)−1, b = 1

= Koenker-Basset error relative to α ∈ (0, 1)



Formulation of Generalized Regression

Let Y ,X1, . . . ,Xn be random variables in L2(Ω,F ,P)
assume no linear combination of X1, . . . ,Xn is constant

Regession problem

For a measure E of error in the basic sense, with E(Y ) <∞,
choose c0, c1, . . . , cn in order to

minimize E
{
Y − [c0 + c1X1 + · · ·+ cnXn]

}
= minimizing a convex function of (c0, c1, . . . , cn) ∈ IRn+1

Existence of solutions

Optimal regression coefficient vectors (c̄0, c̄1, . . . , c̄n) always
exist, and they form a compact convex subset of IRn+1



Portfolio Motivations Revisited

Y1, . . . ,Ym = rates of return of various instruments
x1, . . . , xm = weights of these instruments in a portfolio

Y (x1, . . . , xm) = x1Y1 + · · ·+ xmYm = portfolio rate of return

Optimization context

Minimize some R or D aspect of Y (x1, . . . , xm) under
some constraints on various other R or D aspects

Factor models

Simplication via “factors” X1, . . . ,Xn:
each Yi approximated by Ŷi = ci0 + ci1X1 + · · ·+ cinXn

Y (x1, . . . , xm) thus replaced in optimization by Ŷ (x1, . . . , xm)

Serious issue: (ci0, ci1, . . . , cin) can’t depend on (x1, . . . , xm)!
Should “preferences” therefore influence the mode of regression?



Error Projection

for E = any measure of error (satisfying the axioms)

THEOREM: deviation measures from error measures

In terms of constants C ∈ IR, let

D(X ) = inf
C
E(X − C ), S(X ) = argmin

C
E(X − C )

Then • D is a deviation measure (satisfying the axioms)
• S(X ) is a nonempty closed interval (singleton?)

S(X ) is the associated “statistic”

Inverse question: Is every D the projection of some E?
Yes! but without uniqueness e.g. E(X ) = D(X ) + |EX |

Mixture result:
Suppose D = λ1D1 + · · ·+ λrDr with Dk projected from Ek .
Then ∃ “natural” E built from the Ek ’s that projects onto D

but E 6= λ1E1 + · · ·+ λrEr



Some Examples of Regression

Classical regression (“least squares”)

E(X ) = λ||X ||2 for some λ > 0
S(X ) = µ(X ) = EX mean
D(X ) = λσ(X ) standard deviation, scaled

Regression with range deviation

E(X ) = λ||X ||∞ for some λ > 0
S(X ) = 1

2 [supX + inf X ] center of range

D(X ) = λ
2 [supX − inf X ] radius of range, scaled

Regression with mean absolute deviation

E(X ) = λ||X ||1 = λE |X | for some λ > 0
S(X ) = medX median
D(X ) = λE [ dist(X ,medX ) ] median deviation, scaled



Quantiles and Quantile Regression

recall: FX = c.d.f. for X , FX (z) = prob(X ≤ z)

Quantile interval for α ∈ (0, 1): qα(X ) = [q−
α(X ), q+

α(X )],

q−
α(X ) = inf

{
x
∣∣FX (x) ≥ α

}
, q+

α(X ) = sup
{
x
∣∣FX (x) ≤ α

}
Pure quantile regression

E(X ) = 1
1−αE [X ]+ − EX Koenker-Basset error

S(X ) = qα(X ) α-quantile
D(X ) = CVaRα(X − EX ) α-CVaR deviation

Mixed quantile regression (levels αk , weights λk > 0,
∑

k λk = 1)

E(X ) = min
{∑r

k=1
λk

1−αk
E [X − Ck ]+ − EX

∣∣∣ ∑r
k=1 Ck = 0

}
S(X ) =

∑r
k=1 λkqαk

(X ) mixed quantile
D(X ) =

∑r
k=1 λkCVaRαk

(X − EX ) mixed CVaR deviation



Regression Analysis

Approximation goal: Y ≈ c0 + c1X1 + · · ·+ cnXn

Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]
Z0(c1, . . . , cn) = Y − [c1X1 + · · ·+ cnXn] (c0 omitted)

Regression problem for error measure E :

minimize E(Z (c0, c1, . . . , cn) ) over c0, c1, . . . , cn

THEOREM: error-shaping decomposition

The coefficients c̄0, c̄1, . . . , c̄n are optimal if and only if

(c̄1, . . . , c̄n) ∈ argmin
c1,...,cn

D(Z0(c1, . . . , cn) )

c̄0 ∈ S(Z0(c1, . . . , cn) )

COROLLARY: equivalent view of regression

Choose (c0, c1, . . . cn) to minimize D(Z (c0, c1, . . . , cn))
subject to the requirement that 0 ∈ S(Z (c0, c1, . . . , cn))



Regression Interpreted in Examples

Regression error being shaped: through c0, c1, . . . , cn
Z = Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]

1. Classical regression
minimize σ(Z ) subject to µ(Z ) = 0

2. Range regression
minimize breadth of range of Z subject to the center being 0

3. Median regression
minimize E |Z | subject to “the median of Z being 0”

4. Quantile regression
minimize Dα(Z ) subject to “qα(Z ) = 0”

Dα(Z ) = CVaRα(Z − EZ )

5. Mixed quantile regression
minimize

∑
k λkDαk

(Z ) subject to “
∑

k λkqαk
(Z ) = 0”



Portfolio Application

Y1, . . . ,Ym = rates of return, x1, . . . , xm = weights

Portfolio rate of return:
Y (x) = x1Y1 + · · ·+ xmYm for x = (x1, . . . , xm)

Risk aspects of portfolio: in objective or constraints
fD(x) = D(Y (x)) or fR(x) = R(Y (x)) for various D, R

Factor model with factors X1, . . . ,Xn

Yi ≈ Ŷi(ci) = ci0 + ci1X1 + · · ·+ cinXn for each i

Y (x) ≈ Ŷ (x , c1, . . . , cm) = x1Ŷ1(c1) + · · ·+ xmŶm(cm)

Consequence for risk expressions:
fD(x) = D(Y (x)) ≈ f̂D(x , c1, . . . , cm) = D(Ŷ (x , c1, . . . , cm))

fR(x) = R(Y (x)) ≈ f̂R(x , c1, . . . , cm) = R(Ŷ (x , c1, . . . , cm))

How will these approximation errors affect optimization?
Complication: errors must be treated parametrically in x!



Parametric Bounds: D Type

Factor approximation errors:
Zi(ci0, ci1, . . . , cin) = Yi − [ci0 + ci1X1 + · · ·+ cinXn]

coefficient vectors ci = (ci0, ci1, . . . , cin)

Targeted inequality: with a coefficient vector a ≥ 0

fD(x) ≤ f̂D(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

auxiliary notation: Zi0(ci1, . . . , cin) = Yi − [ci1X1 + · · ·+ cinXn]

THEOREM: prescription for best D approximation

The lowest a = (a1, . . . , an) is achieved by
determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto D
taking ai = D(Zi0(c̄i1, . . . , c̄in)) note: c̄i0 has no role



Parametric Bounds: R Type

Targeted inequality: with a coefficient vector a ≥ 0

fR(x) ≤ f̂R(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

THEOREM: prescription for best R approximation

The lowest a = (a1, . . . , an) is achieved actually with a = 0 by
determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto the
deviation measure D corresponding to the risk measure R
replacing c̄i by c̄∗i , with
c̄∗i0 = R(Zi0(c̄i1, . . . , c̄in)), but c̄∗ij = c̄ij for j = 1, . . . , n.

Acceptability consequence:
R(Ŷ (x , c̄∗1 , . . . , c̄

∗
m)) ≤ 0 =⇒ R(Y (x)) ≤ 0



New Insights For Regression

Different approaches to generalized linear regression are
deeply connected with different preferences about which
approximation error “statistic” should be fixed at 0, and
how the deviation from that “statistic” should be shaped

In a portfolio optimization problem recast in terms of factors,
each D or R expression naturally suggests its own choice of
regression, if the aim is to keep the substitute problem as
close as possible to the given problem

The common practice of generating factor approximations

Yi ≈ ci0 + ci1X1 + · · ·+ +cinXn i = 1, . . . ,m,

only by “least-squares” regression may lead, when applied in
problems of optimization, to risks that are “unacceptable”



Some References

[1] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2006),
“Generalized deviations in risk analysis,” Finance and Stochastics
10, 51–74.

[2] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2006), “Master
funds in portfolio analysis with general deviation measures,”
Journal of Banking and Finance 30, 743–778.

[3] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2006),
“Optimality conditions in portfolio analysis with general deviation
measures,” Math. Programming, Ser. B 108, 515–540.

[4] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2008), “Risk
tuning in generalized linear regression,” Mathematics of Operations
Research 33, 712–729.

[5] R. Koenker, G. W. Bassett (1978), “Regression quantiles,”
Econometrica 46, 33–50.


