THE FUNDAMENTAL QUADRANGLE

relating quantifications of various aspects of a random variable

 $\begin{array}{ccc} \mathsf{risk} \ \mathcal{R} \ \longleftrightarrow \ \mathcal{D} \ \mathsf{deviation} \\ \mathsf{optimization} & \uparrow \ \mathcal{S} \ \uparrow & \mathsf{estimation} \\ \mathsf{regret} \ \mathcal{V} \ \longleftrightarrow \ \mathcal{E} \ \mathsf{error} \end{array}$

- **Lecture 1:** optimization, the role of \mathcal{R}
- **Lecture 2:** estimation, the roles of \mathcal{E} , \mathcal{D} , \mathcal{S}
- Lecture 3: tying both together along with \mathcal{V} and duality

Lecture 3

RISK VERSUS DEVIATION, REGRET AND ENTROPIC DUALITY

R. T. Rockafellar

University of Washington, Seattle University of Florida, Gainesville

Newcastle, Australia

February, 2010

Aversity in Risk

toward a fundamental connection with deviation measures

Recall axioms for coherent measures of risk

(R1) $\mathcal{R}(C) = C$ for all constants C(R2) $\mathcal{R}((1 - \lambda)X + \lambda X') \leq (1 - \lambda)\mathcal{R}(X) + \lambda \mathcal{R}(X')$ for $\lambda \in (0, 1)$ (convexity) (R3) $\mathcal{R}(X) \leq \mathcal{R}(X')$ when $X \leq X'$ (monotonicity) (R4) $\mathcal{R}(X) \leq c$ when $X_k \to X$ with $\mathcal{R}(X_k) \leq c$ (closedness) (R5) $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ for $\lambda > 0$ (positive homogeneity) basic sense:(R5) yes, extended sense:(R5) no

Another important category of risk measures

 \mathcal{R} is an **averse** measure of risk if it satisfies (R1), (R2), (R4) and (R6) $\mathcal{R}(X) > EX$ for all nonconstant X (aversity) **basic** sense: (R5) yes, **extended** sense: (R5) no

Risk Measures Paired With Deviation Measures

- Many risk measures are both coherent and averse $\mathcal{R}(X) = \text{CVaR}_{\alpha}(X), \quad \mathcal{R}(X) = \sup X$
- Some risk measures are coherent but not averse

 $\mathcal{R}(X) = EX, \quad \mathcal{R}(X) = X(\bar{\omega})$

• Some risk measures are averse but not coherent $\mathcal{R}(X) = EX + \lambda\sigma(X)$ (to be seen shortly)

Coherency in deviation: require $\mathcal{D}(X) \leq \sup X - EX$ for all X

THEOREM: deviation versus risk

A one-to-one correspondence $\mathcal{D} \longleftrightarrow \mathcal{R}$ between deviation measures \mathcal{D} and averse risk measures \mathcal{R} is furnished by $\mathcal{R}(X) = EX + \mathcal{D}(X), \qquad \mathcal{D}(X) = \mathcal{R}(X - EX),$

where moreover \mathcal{R} is coherent $\iff \mathcal{D}(X)$ is coherent

Note: coherency fails for deviation measures $\mathcal{D}(X) = \lambda \sigma(X)!$ \implies risk measures $\mathcal{R}(X) = \mu(X) + \lambda \sigma(X)$ aren't coherent

Safety Margins Revised

Recall the traditional approach to $\mu(X)$ being "safely" below 0: $\mu(X) + \lambda \sigma(X) \leq 0$ for some $\lambda > 0$ scaling the "safety" but $\mathcal{R}(X) = \mu(X) + \lambda \sigma(X)$ is not **coherent** Can the coherency be restored if $\sigma(X)$ is replaced by some $\mathcal{D}(X)$?

Yes! $\mathcal{R}(X) = \mu(X) + \lambda \mathcal{D}(X)$ is coherent when \mathcal{D} is coherent

Safety margin modeling with coherency

In the safeguarding problem model

minimize $\bar{c}_0(x)$ over $x \in S$ with $\bar{c}_i(x) \leq 0$ for i = 1, ..., mwhere $\bar{c}_i(x) = \mathcal{R}_i(\underline{c}_i(x))$ for $\underline{c}_i(x) : \omega \to c_i(x, \omega)$

coherency is obtained with

 $\mathcal{R}_i(X) = \mu(X) + \lambda_i \mathcal{D}_i(X)$ for $\lambda_i > 0$ and \mathcal{D}_i coherent

for coherent risk measures in the basic sense

A subset Q of \mathcal{L}^2 is a **coherent risk envelope** if it is nonempty, closed and convex, and $Q \in Q \implies Q \ge 0, EQ = 1$

Interpretation: Any such Q is the "density" relative to the probability measure P on Ω of an alternative probability measure P' on Ω : $E_{P'}[X] = E[XQ], \ Q = dP'/dP$ [specifying Q] \longleftrightarrow [specifying a comparison set of measures P']

Theorem: basic dualization

 \exists **one-to-one** correspondence $\mathcal{R} \longleftrightarrow \mathcal{Q}$ between coherent risk measures \mathcal{R} in the **basic** sense and coherent risk envelopes Q:

 $\mathcal{R}(X) = \sup_{Q \in \mathcal{Q}} E[XQ], \qquad \mathcal{Q} = \left\{ Q \, \big| \, E[XQ] \leq \mathcal{R}(X) \text{ for all } X \right\}$

Conclusion: basic coherency = "customized" worst-case analysis

recall that "1" = density Q of underlying P with respect to itself

$$\mathcal{R}(X) = EX \longleftrightarrow \mathcal{Q} = \{1\}$$

$$\mathcal{R}(X) = \sup X \longleftrightarrow \mathcal{Q} = ig \{ \mathsf{all} \ Q \ge 0, \ EQ = 1 ig \}$$

$$\mathcal{R}(X) = \mathrm{CVaR}_{\alpha}(X) \longleftrightarrow \mathcal{Q} = \left\{ Q \ge 0, \ EQ = 1, \ Q \le (1 - \alpha)^{-1} \right\}$$

$$\mathcal{R}(X) = \sum_{k=1}^{r} \lambda_k \mathcal{R}(X) \longleftrightarrow \mathcal{Q} = \left\{ \sum_{k=1}^{r} \lambda_k \mathcal{Q}_k \mid \mathcal{Q}_k \in \mathcal{Q}_k \right\}$$

Dual characterization of aversity:

- $\mathcal{R} \longleftrightarrow \mathcal{Q}$ as before, but $Q \in \mathcal{Q} \implies Q \ge 0$
- must have $1 \in \mathcal{Q}$ "strictly"

Entropic Characterization of Extended Coherency

what happens for coherent $\ensuremath{\mathcal{R}}$ without positive homogeneity?

Generalized entropy

Call a functional \mathcal{I} on \mathcal{L}^2 an entropic distance when (11) \mathcal{I} is convex and lower semicontinuous (12) $\mathcal{I}(Q) < \infty \implies Q \ge 0, EQ = 1$ (13) inf $\mathcal{I} = 0 \implies cl(dom \mathcal{I})$ is a risk envelope Q

Theorem: extended dualization with conjugacy

 \exists **one-to-one** correspondence $\mathcal{R} \longleftrightarrow \mathcal{I}$ between coherent risk measures \mathcal{R} in the **extended** sense and entropic distances \mathcal{I} :

 $\mathcal{R}(X) = \sup_{Q} \{ E[XQ] - \mathcal{I}(Q) \}, \quad \mathcal{I}(Q) = \sup_{X} \{ E[XQ] - \mathcal{R}(X) \}$

Previous correspondence: $\mathcal{I} =$ "indicator" of \mathcal{Q} Aversity: (13) demands $\mathcal{I}(1) = 0$ with $1 \in \mathcal{Q}$ "strictly" A pairing with Bolzmann-Shannon entropy

 $\mathcal{R}(X) = \log E[e^X]$ coherent and averse corresponds to $\mathcal{I}(Q) = E[Q \log Q]$ when $Q \ge 0$, EQ = 1 but $= \infty$ otherwise

How does this fit into the fundamental quadrangle?

- $\mathcal{D}(X) = \log E[e^{(X-EX)}]$
- $\mathcal{E}(X) = E[e^X X 1]$
- $\mathcal{S}(X) = \log[e^X] = \mathcal{R}(X)!$

deviation measure paired with \mathcal{R} error measure projecting to \mathcal{D}

the "statistic" associated with ${\cal E}$

 \longrightarrow some development to be pursued in regression?

Expected Utility

Utility in finance: having a big role in traditional theory X = incoming money in future, random variable u(x) = "utility" (in present terms) of getting future amount x u generally concave, nondecreasing $u(X(\omega)) =$ utility of amount received in state $\omega \in \Omega$ E[u(X)] = expected utility, something to consider maximizing

Importance of a threshold: X = gain/loss against benchmark incrementally, people hate losses more than they love gains!

Normalization of utility: x > 0 rel. gain, x < 0 rel. loss

u(0) = 0, u'(0) = 1 for differentiable u, but the latter is equivalent without differentiability to $u(x) \le x$ for all x

Resulting interpretation:

u(x) = the amount of present money deemed to be acceptable in lieu of getting the future amount x

Translation to Minimization Framework

Utility replaced by regret: v(x) = -u(-x)

v(x) = the regret in contemplating a future loss x

= the amount of present money deemed necessary as compensation for a relative loss x in the future

v is convex, nondecreasing, with v(0) = 0, $v(x) \ge x$

Converted context:

X = relative loss in future, random variable E[v(X)] = expected regret something to consider minimizing

Insurance interpretation:

E[v(X)] = the amount to charge (with respect to v) for covering the uncertain future loss X

Observations: about $\mathcal{V}(X) = E[v(X)]$ as a functional on \mathcal{L}^2

 \mathcal{V} is convex, nondecreasing, with $\mathcal{V}(0) = 0$, $\mathcal{V}(X) \ge EX$

Quantifications of Regret in General

expressions $\mathcal{V}(X)$ for potential losses X, not just of form E[v(X)]

Coherency in regret

Call \mathcal{V} a **coherent** measure of regret if (V1) $\mathcal{V}(0) = 0$ (V2) $\mathcal{V}((1-\lambda)X + \lambda X') \leq (1-\lambda)\mathcal{V}(X) + \lambda\mathcal{V}(X')$ (convexity) (V3) $\mathcal{V}(X) \leq \mathcal{V}(X')$ when $X \leq X'$ (monotonicity) (V4) $\mathcal{V}(X) \leq c$ when $X_k \to X$ with $\mathcal{V}(X_k) \leq c$ (closedness) (V5) $\mathcal{V}(\lambda X) = \lambda\mathcal{V}(X)$ for $\lambda > 0$ (positive homogeneity)

Aversity in regret

Call \mathcal{V} an **averse** measure of regret if (V3) is relinquished, but (V6) $\mathcal{V}(X) > EX$ for all nonconstant X (aversity)

basic sense: (V5) yes, extended sense: (V5) no

A Trade-off That Identifies Risk

For \mathcal{V} = some measure of regret consider the expression: $C + \mathcal{V}(X - C)$ for a future loss X and constants C **Interpretation:** accept a certain loss C, thereby shifting the threshold and only regetting a residual future loss X - C

Theorem: derivation of risk from regret

Given an **averse** regret measure \mathcal{V} , define \mathcal{R} and \mathcal{S} by

$$\mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}, \quad \mathcal{S}(X) = \operatorname{argmin}_{C} \{ C + \mathcal{V}(X - C) \}$$

Then • *R* is an averse risk measure (coherent for *V* coherent)
• *S*(*X*) is a nonempty closed interval (singleton?)

CVaR example: $\mathcal{V}(X) = E[\frac{1}{1-\alpha}X_+]$ $\mathcal{R}(X) = \min_{C} \{C + \frac{1}{1-\alpha}E[X - C]_+\} = \text{CVaR}_{\alpha}(X)$ \longrightarrow the key minimization rule with argmin = $\text{VaR}_{\alpha}(X) = q_{\alpha}(X)$

Completing the Fundamental Quadrangle of Risk

Error versus regret

The simple relations

$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \quad \mathcal{V}(X) = EX + \mathcal{E}(X),$$

provide a **one-to-one** correspondence between error measures \mathcal{E} and **averse** regret measures \mathcal{V} (with $V(C) < \infty$?), where

 $\mathcal V ext{ is coherent } \iff \mathcal E(-X) \leq EX ext{ when } X \geq 0$

Moreover, the \mathcal{R} from \mathcal{V} is **paired** with the \mathcal{D} from \mathcal{E} , and in the minimization formulas giving statistics \mathcal{S} ,

the $\mathcal{S}(X)$ from $\mathcal{V} \to \mathcal{R}$ = the $\mathcal{S}(X)$ from $\mathcal{E} \to \mathcal{D}$

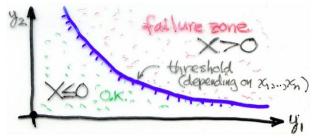
Expectation version:

$$\mathcal{W}(X) = E[v(X)] \longleftrightarrow \mathcal{E}(X) = E[\varepsilon(X)]$$

 $\varepsilon(x) = v(x) - x, \quad v(x) = x + \varepsilon(x)$

Further Development From an Engineering Perspective

Uncertain "cost": $X = c(x_1, ..., x_n; Y_1, ..., Y_r)$ $x_1, ..., x_n = \text{design variables}, Y_1, ..., Y_r = \text{stochastic parameters}$

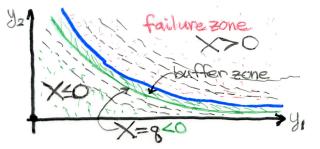


Probability of failure: $p_f = \text{prob}\{X > 0\}$

- How to compute or at least estimate?
- How to cope with dependence on x₁,..., x_n in optimization?
 Both p_f and the threshold shift with changes in x₁,..., x_n

Buffered Failure — Enhanced Safety

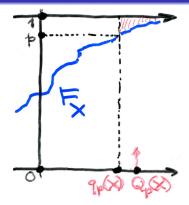
Uncertain "cost": $X = c(x_1, \ldots, x_n; Y_1, \cdots, Y_r)$



Buffered probability of failure: $P_f = \text{prob} \{X > q\}$ q determined so as to make E[X | X > q] = 0

Suggestion: adjust failure modeling to P_f in place of p_f safer by integrating tail information, and easier also to work with in optimization!

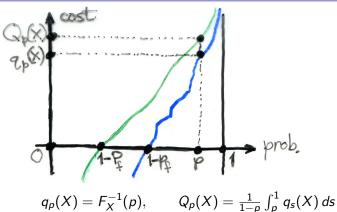
Quantiles and "Superquantiles"



quantile: $q_p(X) = F_X^{-1}(p) = \operatorname{VaR}_p(X)$ superquantile: $Q_p(X) = E[X | X > q_p(X)] = \operatorname{CVaR}_p(X)$ terms in finance: value-at-risk and conditional value-at-risk

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Diagram of Relationships



 $q_p(X)$ can depend poorly on p, but $Q_p(X)$ depends smoothly on pfailure modeling: p_f determined by $q_p(X) = 0$, $p = 1 - p_f$ P_f determined by $Q_p(X) = 0$, $p = 1 - P_f$

Comparison of Roles in Optimization

Key fact: $\mathcal{R}(X) = Q_p(X)$ is coherent but $\mathcal{R}(X) = q_p(X)$ is not!

Constraint $p_f(c(x_1, \ldots, x_n, Y_1, \ldots, Y_m)) \le 1 - p$ corresponds to $q_p(c(x_1, \ldots, x_n, Y_1, \ldots, Y_m)) \le 0$

Constraint $P_f(c(x_1, ..., x_n, Y_1, ..., Y_m)) \le 1 - p$ corresponds to $Q_p(c(x_1, ..., x_n, Y_1, ..., Y_m)) \le 0$

Minimizing $q_p(c(x_1, ..., x_n, Y_1, ..., Y_m))$ corresponds to finding $x_1, ..., x_n$ with lowest C such that $c(x_1, ..., x_n, Y_1, ..., Y_m) \leq C$ with probability < 1 - pMinimizing $Q_p(c(x_1, ..., x_n, Y_1, ..., Y_m))$ corresponds to finding $x_1, ..., x_n$ with lowest C such that, even in the 1 - pworst fraction of cases, $c(x_1, ..., x_n, Y_1, ..., Y_m) \leq C$ on average [1] H. Föllmer, A. Schied (2002, 2004), Stochastic Finance.

[2] A. Ben-Tal, M. Teboulle (2007), "An old-new concept of convex risk measures: the optimized certainty equivalent," *Mathematical Finance* 17, 449–476.

[3] R. T. Rockafellar (1974), *Conjugate Duality and Optimization*, No. 16 in the Conference Board of Math. Sciences Series, SIAM, Philadelphia.

[4] R. T. Rockafellar, J. O. Royset (2010), "On buffered failure probability in design and optimization of structures, *Journal of Reliability Engineering and System Safety.* downloadable: faculty.nps.edu/joroset/docs/RockafellarRoyset_RESS.pdf

NEW BOOK NOW AVAILABLE

	Dontchev Rockafellar	Asen L. Dontchev R. Tyrrell Rockafellar
Asen L. Dontchev - R. Tyrrell Rockafellar Implicit Functions and Solution Mappings	S MM	SPRINGER MONOGRAPHS IN MATHEMATICS
The implicit function theorem is one of the most important theorems in analysis and to many variant are basic tools in partial differential equations and numerical analysis. This book trends the implicit function paradogin in the class of finamenors and the state of the state of the state of the state analysis of the state of problem. The paradogic of this state class of the state of the state of the paradogic of this state class of the state of the state of the state of problem. The paradogic of the state of the the state of the state of the state of the state of the state of the the state of the state of the the state of the state of the state of the state of the the	Implicit Functions and Solution Mapping	Implicit Functions and Solution Mappings A View from Variational Analysis
F109 (19-6 10-2010) 1 = 0 10 20 10 10 10 10 10 10 = 0 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	on Mappings	A → → → → → → → → → → → → → → → → → → →