I Prefer Pi

Corey Sinnamon

Febuary 3, 2015

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

History

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

- History
- Irrationality and Transcendence

 $\mathsf{Big}\ \pi\ \mathsf{Day}$

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

- History
- Irrationality and Transcendence

•
$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

 $\mathsf{Big}\ \pi\ \mathsf{Day}$

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

- History
- Irrationality and Transcendence

•
$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

• Series and Products for π

3/14/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Themes

- History
- Irrationality and Transcendence

•
$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

- Series and Products for π
- Computation

In 1706, John Machin gave the following formula for π

$$\frac{\pi}{4} = 4\arctan\frac{1}{5} - \arctan\frac{1}{239}$$

In 1706, John Machin gave the following formula for π

$$\frac{\pi}{4} = 4\arctan\frac{1}{5} - \arctan\frac{1}{239}$$

Machin used this to calculate 100 digits of π using Gregory's series for arctan,

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In 1706, John Machin gave the following formula for π

$$\frac{\pi}{4} = 4\arctan\frac{1}{5} - \arctan\frac{1}{239}$$

Machin used this to calculate 100 digits of π using Gregory's series for arctan,

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

There are countless variations on Machin's Formula, e.g.

$$\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$$
$$\frac{\pi}{4} = 5 \arctan \frac{1}{7} + 2 \arctan \frac{3}{79}$$
$$\frac{\pi}{4} = 12 \arctan \frac{1}{38} + 20 \arctan \frac{1}{57} + 7 \arctan \frac{1}{239} + 24 \arctan \frac{1}{268}$$

In a 1938 paper, Lehmer gave a simple method for comparing the computational complexity of arctan relations.

In a 1938 paper, Lehmer gave a simple method for comparing the computational complexity of arctan relations.

Consider the Gregory series for $\frac{1}{x}$,

$$\arctan \frac{1}{x} = \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} - \cdots$$

In a 1938 paper, Lehmer gave a simple method for comparing the computational complexity of arctan relations.

Consider the Gregory series for $\frac{1}{x}$,

$$\arctan \frac{1}{x} = \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} - \cdots$$

Lehmer observed that the number of terms that must be calculated to acquire n digits of π is approximately $\frac{n}{\log x}$, since

$$x^{-i} < 10^{-n} \iff i > \frac{n}{\log_{10} x}$$

Thus, given a Machin-like formula of the form

$$\frac{k\pi}{4} = \sum_{i=1}^{n} a_i \arctan \frac{1}{m_i}$$

Lehmer defined its measure as

$$\sum_{i=1}^{n} \frac{1}{\log m_i}$$

Thus, given a Machin-like formula of the form

$$\frac{k\pi}{4} = \sum_{i=1}^{n} a_i \arctan \frac{1}{m_i}$$

Lehmer defined its measure as

$$\sum_{i=1}^{n} \frac{1}{\log m_i}$$

Using the shorthand $[x] = \arctan \frac{1}{x}$, Lehmer computed the measures of most of the interesting Machin-like formulae of the time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(14)[1] = [2] + [3], (5.4178)(Hutton, Euler) (15)[1] = [2] + [5] + [8], (5.8599)(Daze) [1] = 2[3] + [7], (3.2792)(16)(Clausen) [1] = 3[4] + [19.8], (2.4322)(17)[1] = 4[5] - [239], (1.8511)(Machin) (18)[1] = 4[5] - [70] + [99], (2.4737)(19)(Euler, Rutherford) 1 = 5 [6] - [31.4375] - [117], (2.4364)(20)1 = 5[7] + 2[79/3], (1.8873)(21)(Hutton, Euler) [1] = 6[8] + [19.8] - 3[268], (2.2904)(22)(23)[1] = 8[10] - [239] - 4[515], (1.2892)(Klingenstierna) (24)1 = 8 [10] + 3 [18] + 2 [100] + 2 [307] - 3 [515] + 2 [9901], (2.3177)(25)[1] = 8[10] - 2[452761/2543] - [1393], (1.2624)[1] = 8[10] - [100] - [515] - [371498882/3583], (1.0681)(26) $[1] = 8[10] - [100] - 2[1000] + 5[100000] - [719160] - \cdots, (<.8414)$ (27)[1] = 7[10] + 2[50] + 4[100] + [682] + 4[1000] + 3[1303] - 4[90109],(28)(1.9644) (Wrench) [1] = 7[10] + 8[100] + [682] + 4[1000] + 3[1303] - 4[90109] - 2[500150],(29)(1.5513) (Wrench) [1] = 8[10.1] - [239] + 4[52525], (1.6280)(30)[1] = 12[15] - [239] - 4[433.1], (1.6500)(31)[1] = 12[18] + 8[57] - 5[239], (1.7866)(32)(Gauss) [1] = 12[18] + 3[70] + 5[99] + 8[307], (2.2418)(33)(Bennett) [1] = 12[18] + 8[99] + 3[239] + 8[307], (2.1203)(34)(35)[1] = 16[20.05] - [239] - 4[515] + 8[1620050], (1.7182)(36)[1] = 22[26] - 2[2057] - 5[3240647/38479], (1.5279)

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

Although they were not the lowest-measure relations, Lehmer recommended the following for practical computing,

$$\frac{\pi}{4} = 8 \arctan \frac{1}{10} - \arctan \frac{1}{239} - 4 \arctan \frac{1}{515}$$
$$\frac{\pi}{4} = 12 \arctan \frac{1}{18} + 8 \arctan \frac{1}{57} - 5 \arctan \frac{1}{239}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why?

Lehmer recognized that this measure could be grossly inaccurate when a relation involves some repeated calculations. For example, in 1939 J. P. Ballantine observed that

$$\arctan \frac{1}{18} = 18\left(\frac{1}{325} + \frac{2}{3 \cdot 325^2} + \frac{2 \cdot 4}{3 \cdot 5 \cdot 325^3} + \cdots\right)$$
$$\arctan \frac{1}{57} = 57\left(\frac{1}{3250} + \frac{2}{3 \cdot 3250^2} + \frac{2 \cdot 4}{3 \cdot 5 \cdot 3250^3} + \cdots\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lehmer recognized that this measure could be grossly inaccurate when a relation involves some repeated calculations. For example, in 1939 J. P. Ballantine observed that

$$\arctan \frac{1}{18} = 18\left(\frac{1}{325} + \frac{2}{3 \cdot 325^2} + \frac{2 \cdot 4}{3 \cdot 5 \cdot 325^3} + \cdots\right)$$
$$\arctan \frac{1}{57} = 57\left(\frac{1}{3250} + \frac{2}{3 \cdot 3250^2} + \frac{2 \cdot 4}{3 \cdot 5 \cdot 3250^3} + \cdots\right)$$

This produces the lovely relation

$$\pi = \frac{864}{18} \arctan \frac{1}{18} + \frac{1824}{57} \arctan \frac{1}{57} - 5 \arctan \frac{1}{239},$$

which (according to Ballantine) was the fastest known method for computing π to many digits.

Monroe Calculator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Z. A. Melzak (1961)

Z. A. Melzak (1961)

$$\lim_{n \to \infty} V(C_n) / V(S_n) = \sqrt{\frac{2}{\pi e}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two simple products,

$$\frac{\pi}{2e} = \prod_{n=1}^{\infty} (1 + \frac{2}{n})^{(-1)^{n+1}n}$$
$$\frac{6}{\pi e} = \prod_{n=2}^{\infty} (1 + \frac{2}{n})^{(-1)^n n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two simple products,

$$\frac{\pi}{2e} = \prod_{n=1}^{\infty} (1 + \frac{2}{n})^{(-1)^{n+1}n}$$
$$\frac{6}{\pi e} = \prod_{n=2}^{\infty} (1 + \frac{2}{n})^{(-1)^n n}$$

But then

$$\frac{\pi}{6e} = \prod_{n=2}^{\infty} (1 + \frac{2}{n})^{(-1)^{n+1}n} = \frac{\pi e}{6}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two simple products,

$$\frac{\pi}{2e} = \prod_{n=1}^{\infty} (1 + \frac{2}{n})^{(-1)^{n+1}n}$$
$$\frac{6}{\pi e} = \prod_{n=2}^{\infty} (1 + \frac{2}{n})^{(-1)^n n}$$

But then

$$\frac{\pi}{6e} = \prod_{n=2}^{\infty} (1 + \frac{2}{n})^{(-1)^{n+1}n} = \frac{\pi e}{6}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What's going on here?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\prod_{n=2}^{N} (1 + \frac{2}{n})^{(-1)^{n+1}n}$$

$$\frac{\pi}{6e} \approx 0.1926212250 \quad \frac{\pi}{6} \approx 1.423289037$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Two not-as-simple products,

$$\frac{\pi}{2e} = \lim_{N \to \infty} \prod_{n=1}^{2N} (1 + \frac{2}{n})^{(-1)^{n+1}n}$$
$$\frac{6}{\pi e} = \lim_{N \to \infty} \prod_{n=2}^{2N+1} (1 + \frac{2}{n})^{(-1)^n n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rabinowitz and Wagon (1995)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rabinowitz and Wagon (1995)

Presented an algorithm to compute digits of π that

► "drips" digits of π one by one and does not use them afterwards,

- is easy to implement,
- uses only integer arithmetic

Colı	umn He	C	Column Number $c_i = 2$.												
		Digits of π		$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$
	Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2
	× 10		20	20	20	20	20	20	20	20	20	20	20	20	20
	Ĉarry	35	₹ <u>10</u> >30	+12 32	+12 32	$\frac{12}{32}$	+ <u>10</u> - 30	12	127		29	20	$\left \frac{-0}{20} \right $	\ <u>+0</u> - 20	$\lambda_{\overline{20}}^{\pm}$
	Remainders		\mathcal{S}_0	2	2	1 2	3	10-	sф	13	\mathcal{N}_{12}	1 L	20	20	20
	× 10		0	20	20	40	30	100	10	130	120	10	200	200	200
	Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	+72 -	+ <u>150</u>	+ <u>132</u>	(<u>796</u>)	
			713	40	53	80	95	148	108	218	192	160	332	296	200
	Remainders		73	1	3	3	5	5	4	8	5	8	17	20	<u>~</u> 0/l

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Colı	Column Head $rac{a_i}{b_i}=rac{i}{2i+1}$								Column Number $c_i = 2$.								
		Digits of π		$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$		
	Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2		
	× 10		20	20	20	20	20	20	20	20	20	20	20	20	20		
	Carry	35	₹ <u>10</u> 30	+ <u>12</u> 32	32	1 <u>12</u> 32	+ <u>10</u> 30	12	27		29	20	$\frac{0}{20}$	20	$\overline{\sqrt{20}}$		
	Remainders		\mathcal{P}^0	2	2	4	3	10-	$^{\circ}\Psi$	13-	(12	$ \downarrow\downarrow\rangle$	20	, ²⁰)	20-		
	× 10		0	20	20	40	30	100	10	130	120	10	200	200	200		
	Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	<u>+72</u> -	- <u>150</u> -	+ <u>132</u>	(196)			
			713	40	53	80	95	148	108	218	192	160	332	296/	200		
	Remainders		3	1	3	3	5	5	4	8	5	8	17	20	~0/1		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algorithm:

Colı	Column Head $rac{a_i}{b_i}=rac{i}{2i+1}$									Column Number $c_i = 2$.								
		Digits of π		$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$			
	Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2			
	× 10		20	20	20	20	20	20	20	20	20	20	20	20	20			
	Carry	35	(<u>+10</u>)	+ <u>12</u> 32	+ <u>12</u> 32	\ <u>12</u> 32	10 30	12	27		29	$\frac{r\theta}{20}$	$\frac{0}{20}$	\ <u>≠-0</u> - 20	$\lambda_{\overline{20}}$			
	Remainders		\mathcal{S}^0	<u>2</u>	2	4	لو ۱	10-	$\gamma \varphi$	13	J\ <u>42</u>)	$\langle \gamma \rangle$	20) <mark>20</mark>)	20			
	× 10		0	20	20	40	30	100	10	130	120	10	200	200	200			
	Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	<u>+72</u> -	- <u>150</u> -	+ <u>132</u>	(196)				
			713	40	53	80	95	148	108	218	192	160	332	296	200			
	Remainders		3	1	3	3	5	5	4	8	5	8	17	20	~0/			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algorithm:

• Multiply each c_i by 10.

Colu	Column Head $rac{a_i}{b_i}=rac{i}{2i+1}$								Column Number $c_i = 2$.								
		Digits of π		$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$		
	Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2		
	× 10		20	20	20	20	20	20	20	20	20	20	20	20	20		
	Carry	35	30	+12 32	+ <u>12</u> 32	12-	+ <u>10</u> 30	12	127		29	$\frac{20}{20}$	$\frac{0}{20}$	20	$\overline{\sqrt{20}}$		
	Remainders		\mathcal{S}^0	\searrow_2	2	4	13	10-	$\gamma \varphi$	13	J\ <u>42</u>)	$\langle \gamma \rangle$	20) '2 0)	20		
	× 10		0	20	20	40	30	100	10	130	120	10	200	200	200		
	Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	<u>+72</u> -	- <u>150</u> -	+ <u>132</u>	(196)			
			713	40	53	80	95	148	108	218	192	160	332	296/	200		
	Remainders		3	1	3	3	5	5	4	8	5	8	17	20	~0/1		

Algorithm:

- Multiply each c_i by 10.
- Proceeding from the rightmost to the leftmost column, find positive integers q and r such that q ⋅ b_i + r = c_i with 0 < r < b_i, then assign c_i ← r and carry q ⋅ a_i left.

Colı	Column Head $rac{a_i}{b_i}=rac{i}{2i+1}$								Column Number $c_i = 2$.								
		Digits of π		$\frac{1}{3}$	<u>2</u> 5	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$		
	Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2		
	× 10		20	20	20	20	20	20	20	20	20	20	20	20	20		
	Ĉarry	35	₹ <u>10</u> >30	112 32	32	\ <u>+12</u> \32	+ <u>10</u> 30	12	27		29	20	$\frac{1}{20}$	\ <u>≠0</u> 20	λ_{20}^{\pm}		
	Remainders		$arphi_0$	2	2	1 77	رو ۱	10-	νĄ	13)\ ₁₂)	$\langle \downarrow \rangle$	20	1 <mark>20</mark>)	20		
	× 10		0	20	20	40	30	100	10	130	120	10	200	200	200		
	Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	+72 -	1 <u>50</u>	+ <u>132</u>	(<u>796</u>)			
			713	40	53	80	95	148	108	218	192	160	332	296	200		
	Remainders		33	1	3	3	5	5	4	8	5	8	17	20	~0/1		

Algorithm:

- Multiply each c_i by 10.
- Proceeding from the rightmost to the leftmost column, find positive integers q and r such that q ⋅ b_i + r = c_i with 0 < r < b_i, then assign c_i ← r and carry q ⋅ a_i left.
- ▶ On the leftmost column, output the first digit of the column number c_0 . This is the next digit of $\pi!$

	Digits of π		$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	<u>9</u> 19	$\frac{10}{21}$	$\frac{11}{23}$	$\frac{12}{25}$
Initialize		2	2	2	2	2	2	2	2	2	2	2	2	2
× 10		20	20	20	20	20	<u>,</u> 20	20	20	20	20	20	20	20
Carry	35	(# <u>10</u> ~	+12-	+12	\ 12	\ 10	+12	\#7	<u>کم ر</u>	`\ <u>#</u> 9	<u>ጉ #ው</u>	\ <u>**</u> 0	· ۵:غ /	$\lambda = $
		30	(32)	32	132	30	32	\27	28	29	20	20	20	^20
Remainders		>0	~2-	2	4	्रु	10	- 4-	· 13	- 42	1	20	20.	20-/
× 10		0	20	20	40	30	100	10	130	120	10	200	200	200
Carry	1K	+ <u>13</u>	+ <u>20</u>	+ <u>33</u>	+ <u>40</u>	+ <u>65</u>	<u>+ 48</u>	<u>+98</u>	<u>+ 88</u>	+72	+ <u>150</u>	+ <u>132</u>	(<u>796</u>)	
		>13	40	53	80	95	148	108	218	192	160	332	296	200
Remainders		33	1	3	3	5	5	4	8	5	8	17	20	<u>~</u> 0/
× 10		30	10	30	30	50	50	40	80	50	80	170	200	0
Carry	45	+11	+ <u>24</u>	+ <u>30</u>	+ <u>40</u>	+ <u>40</u>	+ <u>42</u>	+ <u>63</u>	+ <u>64</u>	+ <u>90</u>	+ <u>120</u>	<u>+ 88</u>	+0	_
		>41	34	60	70	90	92	103	144	140	200	258	200	0
Remainders		\searrow_1	1	0	0	0	4	12	9	4	10	6	16	0
v 10		10	10	0	0	0	40	120	90	40	100	60	160	0
Ĉarry	1 К	+4	+2	+9	+24	+55	+ 84	+ 63	+ 48	+72	+_60	+ 66	+0	_
		14	12	9	24	55	124	183	138	112	160	126	160	0

Why does this work?

(ロ)、(型)、(E)、(E)、 E) の(の)

Why does this work?

The algorithm is based on the following representation for $\frac{\pi}{2}$,

$$\frac{\pi}{2} = \sum_{i=0}^{\infty} \frac{i!}{(2i+1)!!} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why does this work?

The algorithm is based on the following representation for $\frac{\pi}{2}$,

$$\frac{\pi}{2} = \sum_{i=0}^{\infty} \frac{i!}{(2i+1)!!} = 1 + \frac{1}{3} + \frac{1\cdot 2}{3\cdot 5} + \frac{1\cdot 2\cdot 3}{3\cdot 5\cdot 7} + \cdots$$

Observe that we can rewrite this as

$$\frac{\pi}{2} = 1 + \frac{1}{3} \left(1 + \frac{2}{5} \left(1 + \frac{3}{7} \left(1 + \dots \right) \right) \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Why does this work?

The algorithm is based on the following representation for $\frac{\pi}{2}$,

$$\frac{\pi}{2} = \sum_{i=0}^{\infty} \frac{i!}{(2i+1)!!} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$$

Observe that we can rewrite this as

$$\frac{\pi}{2} = 1 + \frac{1}{3} \left(1 + \frac{2}{5} \left(1 + \frac{3}{7} \left(1 + \dots \right) \right) \right)$$

or equivalently,

$$\pi = 2 + \frac{1}{3} \left(2 + \frac{2}{5} \left(2 + \frac{3}{7} \left(2 + \dots \right) \right) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

In some ways, this *mixed-radix* form is similar to having a closed form for the digits of π in some base b, except the base changes with every term.

In some ways, this *mixed-radix* form is similar to having a closed form for the digits of π in some base b, except the base changes with every term.

$$\pi = a_0 + \frac{1}{b} \left(a_1 + \frac{1}{b^2} \left(a_2 + \frac{1}{b^3} \left(a_3 + \cdots \right) \right) \right)$$

In some ways, this *mixed-radix* form is similar to having a closed form for the digits of π in some base b, except the base changes with every term.

$$\pi = a_0 + \frac{1}{b} \left(a_1 + \frac{1}{b^2} \left(a_2 + \frac{1}{b^3} \left(a_3 + \cdots \right) \right) \right)$$

 $\pi = a_0.a_1a_2a_3\ldots_b$

In some ways, this *mixed-radix* form is similar to having a closed form for the digits of π in some base b, except the base changes with every term.

$$\pi = a_0 + \frac{1}{b} \left(a_1 + \frac{1}{b^2} \left(a_2 + \frac{1}{b^3} \left(a_3 + \cdots \right) \right) \right)$$

 $\pi = a_0.a_1a_2a_3\ldots_b$

$$\pi = 2 + \frac{1}{3} \left(2 + \frac{2}{5} \left(2 + \frac{3}{7} \left(2 + \cdots \right) \right) \right)$$
$$\pi = 2.222 \cdots \left[1, \frac{1}{3}, \frac{2}{5}, \ldots \right]$$

In some ways, this *mixed-radix* form is similar to having a closed form for the digits of π in some base b, except the base changes with every term.

$$\pi = a_0 + \frac{1}{b} \left(a_1 + \frac{1}{b^2} \left(a_2 + \frac{1}{b^3} \left(a_3 + \cdots \right) \right) \right)$$

 $\pi = a_0.a_1a_2a_3\ldots_b$

$$\pi = 2 + \frac{1}{3} \left(2 + \frac{2}{5} \left(2 + \frac{3}{7} \left(2 + \cdots \right) \right) \right)$$
$$\pi = 2.222 \cdots \left[1, \frac{1}{3}, \frac{2}{5}, \cdots\right]$$

In this sense, the algorithm is simply changing the base of the representation.

Unbounded Spigot Algorithms for the Digits of π

Jeremy Gibbons (2006)

Developed an algorithm using the same principle, but much cleaner in the details. Particularly, it is unbounded - no need to decide on the number of digits before starting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wallis

$$\frac{\pi}{2} = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Wallis

$$\frac{\pi}{2} = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Ramanujan

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{[1103 + 26390n]}{396^{4n}}$$

Wallis

$$\frac{\pi}{2} = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Ramanujan

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{[1103 + 26390n]}{396^{4n}}$$

D. H. Bailey, P. Borwein, S. Plouffe

$$\pi = \sum_{k=0}^{\infty} \left[\frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right) \right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ