Investigations into Normal numbers and Experimental Mathematics

Elliot Catt

CARMA, University of Newcastle

February 3, 2015

Definition

A Normal number is an irrational number in which every combination of digits occurs as frequently as any other combination.

That is, when

- 1. $a_1 a_2 \cdots a_k$ is any combination of k digits, and
- 2. N(t) is the number of times this combination occurs among the first t digits in the base b expansion,

then

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{b^k}.$$

Known Normal Numbers

Date	The Number	Author		
1933	0.123456789	Champernowne		
1946	0.23571113	Copeland and Erdös Constant		
1952	0.f(1)f(2)f(3)	Davenport and Erdös		
1973	$\sum_{k=1}^{\infty} \frac{1}{b^{c^k} c^k}$	Stoneham		
2001	0.11011100101_2	Binary Champerownes, Bailey and Crandall		

We investigated the Davenport-Erdös numbers, that when $f \in \mathbb{Q}[x]$ such that $f(x) \ge 0$ for x > 0, have the form 0.f(1)f(2)f(3).... We investigated the Davenport-Erdös numbers, that when $f \in \mathbb{Q}[x]$ such that $f(x) \ge 0$ for x > 0, have the form 0.f(1)f(2)f(3)....

Theorem (?)

Let $f(x) \in \mathbb{Q}[x]$, so that when $x \in \mathbb{N}$, $f(x) \ge 0$. Then the decimal $.f(1)f(2)f(3) \dots_{10}$ is 10-normal.

We investigated the Davenport-Erdös numbers, that when $f \in \mathbb{Q}[x]$ such that $f(x) \ge 0$ for x > 0, have the form 0.f(1)f(2)f(3)....

Theorem (?)

Let $f(x) \in \mathbb{Q}[x]$, so that when $x \in \mathbb{N}$, $f(x) \ge 0$. Then the decimal $.f(1)f(2)f(3)..._{10}$ is 10-normal.

Theorem (Us)

Let $f(x) \in \mathbb{Q}[x]$, so that when $x \in \mathbb{N}$, $f(x) \ge 0$. Then the decimal $.f(1)f(2)f(3) \dots_b$ is *b*-normal.

[?]

Definition (Simply Strongly Normal)

- 1. Let $\alpha \in \mathbb{R}$ with base-*b* fractional part $0.a_0a_1a_2...$, and
- 2. $m_k(n) := \#\{i : a_i = k, i \le n\}.$

 α is simply strongly normal in base b if for each $0 \le k \le b-1$

$$\limsup_{n \to \infty} \frac{m_k(n) - n/b}{\sqrt{2n \log \log n}} = \frac{\sqrt{b-1}}{b}, \text{ and}$$
$$\liminf_{n \to \infty} \frac{m_k(n) - n/b}{\sqrt{2n \log \log n}} = -\frac{\sqrt{b-1}}{b}.$$

Moreover...

A number is strongly normal in base b if it is simply strongly normal in each base b^j for $j = 1, 2, 3, \ldots$, and is absolutely strongly normal if it is strongly normal in every base.

It was proved in (?)

1. If a number is strongly normal, it is normal.

2. "Almost all" numbers are strongly normal in any base.

Strong Normality

Let $\alpha \in \mathbb{R}$ have base ten expansion $0.a_1a_2...$, and take

$$p_k(n) = \frac{m_k(n) - n/b}{\sqrt{2n\log\log n}}$$

(this is equivalent to removing the limits from the definition of Simply Strongly Normal).

We plot, for various Davenport-Erdös numbers, p against n for all k of α and can observe whether $p_k(n)$ is tending towards $\pm \frac{3}{10}$ or not.

Strong Normality

Colour	k	Colour	k
Red	0	Pink	5
Green	1	Yellow	6
Blue	2	Black	7
Coral	3	Turquoise	8
Orange	4	Maroon	9

$$f(x) = x$$
 for $n = 1, \dots, 10^6$.

$$f(x) = x$$
 for $n = 1, \dots, 10^7$.

$$f(x) = x$$
 for $n = 1, \dots, 10^8$.

$$f(x) = x^2$$
 for $n = 1, \dots, 10^6$.

 $f(x) = x^2$ for $n = 1, \dots, 10^7$.

$$f(x) = x^2$$
 for $n = 1, \dots, 10^8$.

$$f(x) = x^3$$
 for $n = 1, \dots, 10^6$.

$$f(x) = x^3$$
 for $n = 1, \dots, 10^7$.

$$f(x) = x^3$$
 for $n = 1, \dots, 10^8$.

$$f(x) = 2x^4 + 2x^2$$
 for $n = 1, \dots, 10^6$.

$$f(x) = 2x^4 + 2x^2$$
 for $n = 1, \dots, 10^7$.

$$f(x) = 2x^4 + 2x^2$$
 for $n = 1, \dots, 10^8$.

$$f(x) = 3x^3 - 2x^2 + x$$
 for $n = 1, \dots, 10^6$.

$$f(x) = 3x^3 - 2x^2 + x$$
 for $n = 1, \dots, 10^7$.

$$f(x) = 3x^3 - 2x^2 + x$$
 for $n = 1, \dots, 10^8$.

Strong Normality

Conjecture

Let $f(x) \in \mathbb{Q}[x]$, then the decimal

 $f(1)f(2)f(3)\dots_{10}$

is <u>not</u> strongly normal when $x \in \mathbb{N}$ and $f(x) \ge 0$.

We repeated these graphs using famous (possibly normal?) constants rather than Davenport-Erdös numbers and observed something interesting... We repeated these graphs using famous (possibly normal?) constants rather than Davenport-Erdös numbers and observed something interesting...

We shall see that with these constants $p_k(n)$ is generally bound between $\pm \frac{3}{10}$ as $n \to \infty$. π for $n=1,\ldots,10^6$

$$\pi$$
 for $n = 1, \dots, 10^7$

 π for $n=1,\ldots,10^8$

e for $n = 1, ..., 10^6$

e for
$$n = 1, ..., 10^7$$

e for
$$n = 1, \ldots, 10^8$$

$$\varphi = \frac{1+\sqrt{5}}{2}$$
 for $n = 1, ..., 10^6$

$$\varphi = \frac{1+\sqrt{5}}{2}$$
 for $n = 1, ..., 10^7$

$$\varphi = \frac{1+\sqrt{5}}{2}$$
 for $n = 1, ..., 10^8$

log(2) for $n = 1, ..., 10^6$

log(2) for $n = 1, ..., 10^7$

log(2) for $n = 1, ..., 10^8$

Catalan's Constant for $n = 1, \ldots, 10^6$

Catalan's Constant for $n = 1, ..., 10^7$

Catalan's Constant for $n = 1, \ldots, 10^8$

 $\zeta(3)$ for $n = 1, ..., 10^6$

$$\zeta(3)$$
 for $n = 1, \dots, 10^7$

$$\zeta(3)$$
 for $n = 1, \dots, 10^8$

Strong Normality

Conjecture

 π , $\zeta(3)$, e, log(2), φ and Catalan's Constants constant are simply strongly normal in base 10.

Future Work

- 1. Plots for more digits, 10^{10} +.
- 2. Plots in other bases apart from 10.
- 3. Comparing $p_k(n)$ with other functions.
- 4. A proof for the above conjectures.
- 5. A proof of the irrationality of $\pi + e$ (Probably above my calibre at this point).
- 6. Investigations into big data.

Acknowledgements

For helping me with everything from Pi to Python

- ▶ Laureate Professor Jonathan Borwein,
- ▶ Dr David Allingham,
- ▶ Mr Matthew Tam,
- ▶ Dr Paul Vbrik,
- ▶ Mr Corey Sinnamon,
- ▶ Mr Ghislain McKay,
- ▶ Mr Tony Jackson, and
- ▶ and all the wonderful people in the Mathematics department.

Thank you!