An Investigation Into Gram Matrices Of Rectangular ±1 Matrices Joshua Hartigan Supervisor: Judy-anne Osborn

Gram Matrices

• Here's a \pm matrix R = $\begin{pmatrix} 1 & 1 & -1 & 1 & -1 \\ -1 & -1 & 1 & 1 \end{pmatrix}$

And here's its' Gram matrix $G = \begin{pmatrix} 5 & -3 \\ -3 & 5 \end{pmatrix}$

In general, the Gram matrix is $G = RR^T$

Why bother?

 Gram matrices relate to determinants and high determinants are interesting to combinatorialists and statisticians

Context

- A lot of work has been done on square ±1 matrices, their Gram matrices and their determinants
- We decided to investigate rectangular ±1 matrices and were going to look at determinants but got interested in Gram matrices along the way for their own sake

The first thing we tried

- We started with random ±1 matrices, computed their Gram matrices and looked at what we got
- We found Gram matrices like this:

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 3 & 1 \\ 1 & 3 & -1 \\ 1 & 3 & -3 \\ -1 & -3 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ -1 & -3 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 & 1 \\ -1 & 3 & -3 \\ 1 & -3 & 3 \end{pmatrix}$$

Things we noticed for Gram matrices of $k \ge n \pm 1$ matrices

- 'n's on the diagonal
- Symmetry
- All entries either even or odd, and from the set {-n, -n+2,...,n}

And we can prove them all, so it's a Theorem

e.g. Proof of symmetry

Take any k x n matrix, called R:

	$(a_{1,1})$	$a_{1,2}$	•••	$a_{1,n}$
	$a_{2,1}$	$a_{2,2}$	•••	$a_{2,n}$
R =	:	÷	$\gamma_{\rm e}$:
	$a_{k,1}$	$a_{k,2}$	•••	$a_{k,n}$

Our definition of Gram matrices is that $G = RR^T$ So, to get the ijth entry of the Gram matrix, we take the dot product of row i with row j, i.e: $G_{ij} = r_i \cdot r_j$ Similarly, for entry $G_{ji} = r_j \cdot r_i = r_i \cdot r_j = G_{ij}$ Hence, Gram matrices are always symmetric.

Next, we were more systematic

- ▶ We considered 2 x n ±1 matrices for n=1..10
- And 3 x n case
- And 4 x n case
- And 5 x n case
- And then the computer went crazy

Computing the frequency

- With the previous theorem, we focused on the entries on the right hand side of the main diagonal
- As all of these entries came from the set {-n, -n+2,..., n}, we could code these entries in their respective base and add them up, giving each matrix its own ID and allowing us to find the frequency each matrix occurred

Encoding Grams example • Take the Gram matrix $G = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ -1 & -3 & 3 \end{pmatrix}$ This comes from a $3x3 \pm 1$ matrix, so the possible entries off the main diagonal come from the set $\{-3, -1, 1, 3\} \rightarrow \{0, 1, 2, 3\}$ in base 4. Doing the appropriate sum allows us to create an ID for each distinct Gram:

$$\left(\left(\frac{1}{2}\right) + \left(\frac{3}{2}\right)\right) \times 4^2 + \left(\left(\frac{-1}{2}\right) + \left(\frac{3}{2}\right)\right) \times 4 + \left(\left(\frac{-3}{2}\right) + \frac{3}{2}\right)$$

$$= (2) \times 4^2 + (1) \times 4 + 0$$

Here's some data

$$\begin{pmatrix} \pm \\ \pm \end{pmatrix} : \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}; \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \pm & \pm \\ \pm & \pm \end{pmatrix} : \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}; \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}; \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} \pm & \pm \\ \pm & \pm \end{pmatrix} : \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}; \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}; \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}; \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}$$

Curiously, all possible Grams occurred subject to our Theorem

More data

Furthermore, they occurred with the following frequencies:

$$\begin{pmatrix} \pm \\ \pm \end{pmatrix} : \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} ; \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$2 \qquad 2$$

$$\begin{pmatrix} \pm \\ \pm \\ \pm \end{pmatrix} : \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} ; \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} ; \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$4 \qquad 8 \qquad 4$$

$$\begin{pmatrix} \pm & \pm & \pm \\ \pm & \pm & \pm \end{pmatrix} : \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}; \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}; \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}; \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}$$

Here's those frequencies again

... Anyone notice anything?

Here's what we noticed

Pascal's Triangle in disguise!

We can explain the powers of 2!

Multiplying a column by -1 doesn't change the Gram for a 2 x n R-matrix!

Proof:

Let's begin with any 2 x n matrix $R = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \end{pmatrix}$

Now, take any column and multiply by -1: $R' = \begin{pmatrix} -a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ -a_{2,1} & a_{2,2} & \cdots & a_{2,n} \end{pmatrix}$ Finding the Gram: $G = \begin{pmatrix} -a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ -a_{2,1} & a_{2,2} & \cdots & a_{2,n} \end{pmatrix} \begin{pmatrix} -a_{1,1} & -a_{2,1} \\ a_{1,2} & a_{2,2} \\ \vdots & \vdots \\ a_{1,n} & a_{2,n} \end{pmatrix}$

We can explain the powers of 2!

• G = $\begin{pmatrix} (-a_{1,1})^2 + a_{1,2}^2 + \dots + a_{1,n}^2 & (-a_{1,1})(-a_{2,1}) + a_{1,2}a_{2,2} + \dots + a_{1,n}a_{2,n} \\ (-a_{2,1})(-a_{1,1}) + a_{2,2}a_{1,2} + \dots + a_{2,n}a_{1,n} & (-a_{2,1})^2 + a_{2,2}^2 + \dots + a_{2,n}^2 \end{pmatrix}$

$$= \begin{pmatrix} a_{1,1}^2 + a_{1,2}^2 + \dots + a_{1,n}^2 & a_{1,1}a_{2,1} + a_{1,2}a_{2,2} + \dots + a_{1,n}a_{2,n} \\ a_{2,1}a_{1,1} + a_{2,2}a_{1,2} + \dots + a_{2,n}a_{1,n} & a_{2,1}^2 + a_{2,2}^2 + \dots + a_{2,n}^2 \end{pmatrix}$$

Which is the same Gram that comes from a ± 1 matrix where the first column isn't multiplied by -1. There are 2^n choices of sign change of columns.

We can explain the powers of 2!

- As multiplying columns by -1 doesn't change the resulting Gram matrix, we can reduce the number of R-matrices used to find all Grams by making every entry in the first row +1.
- So we made our program more efficient by applying this.

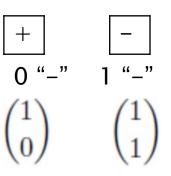
We can explain Pascal's Triangle too!

Remember, first row all +1s now!

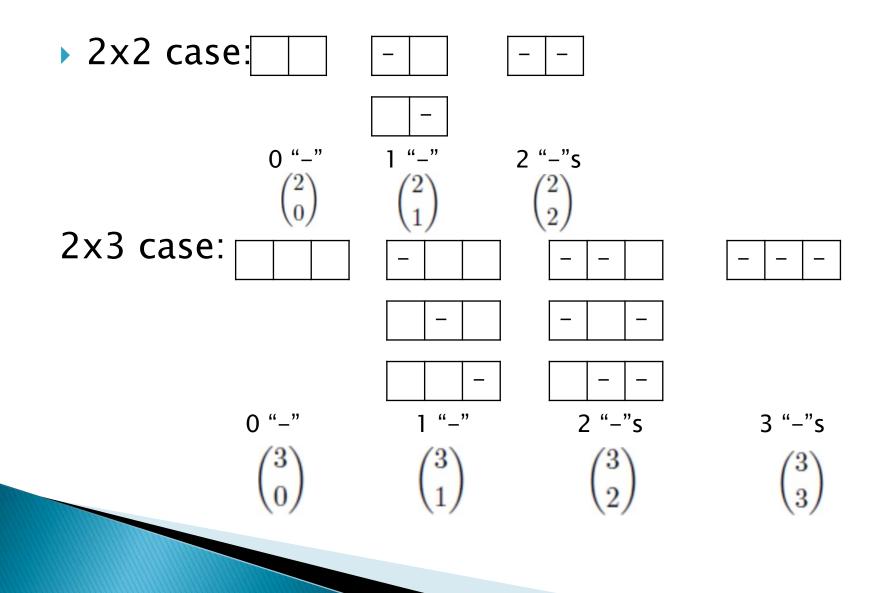
Then look at the number of ways to put -1 in the second row:

2x1 case:

Binomial coefficients:



We can explain Pascal's Triangle too!



Conclusion: Pascal's Triangle

- 1 4 6 4

3xn is more mysterious

Interestingly, not all possible Grams occur.

3x1 case: Out of 8 possible Grams, only 4 occur each with a frequency of 2

3x2 case: Out of 27 possible Grams, only 10 occur with a frequency of: 4 8 4 8 8 8 8 4 8 4

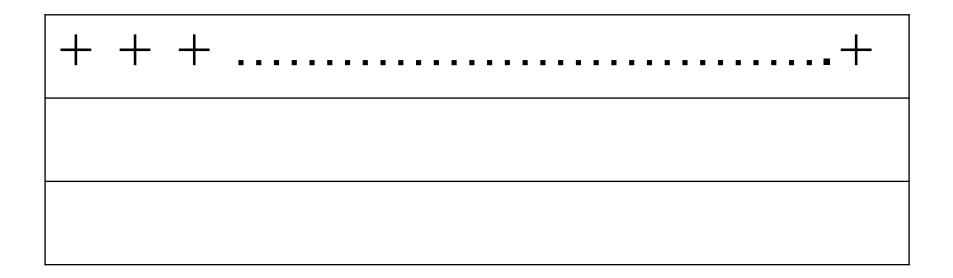
3x3 case: Out of 64 possible Grams, only 20 occur with a frequency of: 8 24 24 24 8 24 48 24 24 48 24 24 24 48 48 24 24 8 24 24 8

Frequencies

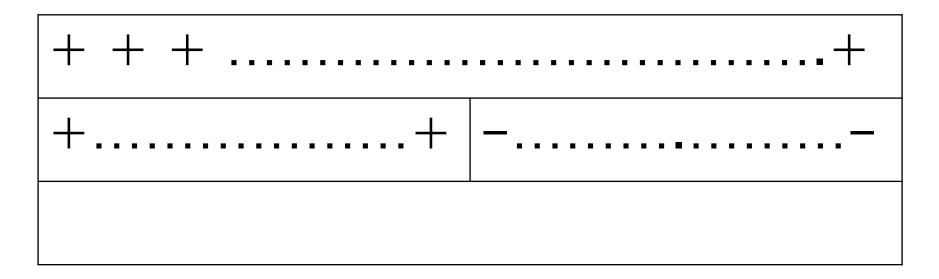
 Once again, we can take out powers of 2 and now end up with something which contains Pascals triangle:

								2	(1	1	1	1)								
					4	(1	2	1	2	2	2	2	1	2	1)					
8	(1	3	3	1	3	6	3	3	6	3	3	3	6	6	3	3	1	3	3	1)

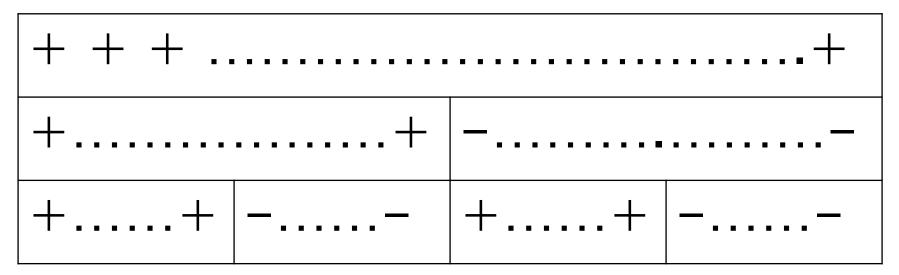
This can be explained in a similar way to that of the 2xn cases, it just has an extra row of possible $\pm 1s!$



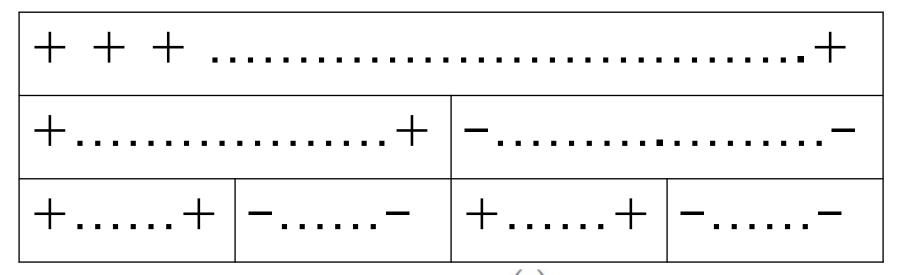
The first row is all +1s



Now we'll arrange the second row so all the +1s are on the left.



In the third row, within each "block", arrange all +1s on the left.



2nd row: k minuses, means $\binom{n}{k}$ possibilities 3rd row: i minuses in the left block (length n-k), and j minuses in the right block means $\binom{n-k}{i}\binom{k}{j}$ possibilities.

3xn frequency multi-set

$$\left\{\binom{n}{k}\binom{n-k}{i}\binom{k}{j}; 0 \le i, j, k \le n\right\}$$

e.g. when n=2:

Frequencies multi-set summary

• 2xn:
$$\binom{n}{k}; 0 \le k \le n$$

• 3xn: $\binom{n}{k}\binom{n-k}{i}\binom{k}{j}; 0 \le i, j, k \le n$

Frequencies multi-set summary

•
$$2xn: \{\binom{n}{k}; 0 \le k \le n\}$$

• $3xn: \{\binom{n}{k}\binom{n-k}{i}\binom{k}{j}; 0 \le i, j, k \le n\}$
• $4xn: \{\binom{n}{k_1}\binom{n-k_1}{k_2}\binom{k_1}{k_3}\binom{n-k_1-k_2}{k_4}\binom{k_2}{k_5}\binom{k_1-k_3}{k_6}\binom{k_3}{k_7}; \forall k_i\}$

Frequencies multi-set summary

•
$$2xn: \{\binom{n}{k}; 0 \le k \le n\}$$

• $3xn: \{\binom{n}{k}\binom{n-k}{i}\binom{k}{j}; 0 \le i, j, k \le n\}$
• $4xn: \{\binom{n}{k_1}\binom{n-k_1}{k_2}\binom{k_1}{k_3}\binom{n-k_1-k_2}{k_4}\binom{k_2}{k_5}\binom{k_1-k_3}{k_6}\binom{k_3}{k_7}; \forall k_i\}$

This is nice, but gets intricate... ...so we decided to look at a simpler question

Frequencies aside, how many Grams are there?

- For 3xn, remember we had (empirically)
 - n=1: 4 out of 8
 - n=2: 10 out of 27
 - n=3: 20 out of 64
 - n=4: 35 out of 729

Frequencies aside, how many Grams are there?

For 3xn, remember we had (empirically)

- n=1: 4 out of 8
- n=2: 10 out of 27
- n=3: 20 out of 64
- n=4: **35** out of 125

Gram counting formulas

2x1 case:
$$2 = \binom{2}{1}$$

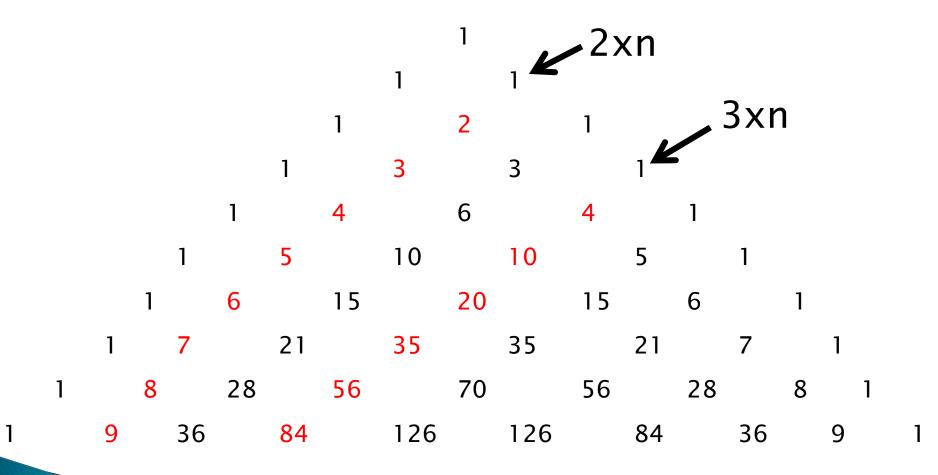
2x2 case: $3 = \binom{3}{1}$
2x3 case: $4 = \binom{4}{1}$
 $\binom{n+1}{1}$

3x1 case:
$$4 = \binom{4}{3}$$

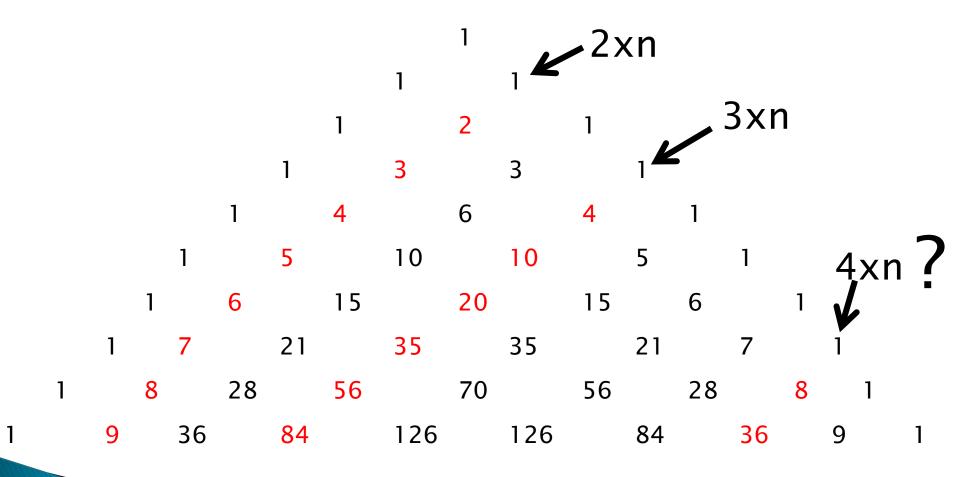
3x2 case: $10 = \binom{5}{3}$
3x3 case: $20 = \binom{6}{3}$
 $\binom{n+3}{3}$

Still empirical

Following diagonals on Pascal's Triangle



Following diagonals on Pascal's Triangle



Counting formula conjecture

We have:

> 2xn: #Grams =
$$\binom{n+1}{1}$$

•
$$3xn: #Grams = \binom{n+3}{3}$$

We thought we had a conjecture for 4xn too:																		
1 1 Because																		
t	sec	au	se.	••			1		2		1							
						1		3		3		1						
					1		4		6		4		1					
				1		5		10		10		5		1				
			1		6		15		20		15		6		1			
		1		7		21		35		35		21		7		1		
	1		8		28		56		70		56		28		8		1	
1		9		36		84		126		126		84		36		9		1
	10		45		120		210		252		210		120		45		10	

We thought we had a conjecture for 4xn too:																						
										1		1										
B	ut								1		2		1									
								1		3		3		1								
							1		4		6		4		1							
						1		5		10		10		5		1						
					1		6		15		20		15		6		1					
				1		7		21		35		35		21		7		1				
			1		8		28		56		70		56		28		8		1			
		1		9		36		84		126		126		84		36		9		1		
	1		10		45		120		210		252		210		120		45		10		1	
1		11		55		165		330		462		462		330		165		55		11		1
	12												792		•						12	

The actual sequence is

8, 36, 120, 329, 784

Unfortunately, this does not occur in Sloan's online Encyclopedia of Integer Sequences:

8, 36, 120, 329, 784

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:8,36,120,329,784

Sorry, but the terms do not match anything in the table.

If your sequence is of general interest, please submit it using the <u>form</u> <u>provided</u> and it will (probably) be added to the OEIS! Include a brief description and if possible enough terms to fill 3 lines on the screen. We need at least 4 terms.

Program limitations

We are beginning to hit the limits of how far we can investigate using our C-program. For example, the 6x3 case is causing the program to crash So we still have mysteries to investigate further!

Thanks for your attention