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 Here’s a ± matrix  
 
 
 And here’s its’ Gram matrix  

 
 
 

 In general, the Gram matrix is  
G= RRT 

  
 



 Gram matrices relate to determinants and 
high determinants are interesting to 
combinatorialists and statisticians 



 A lot of work has been done on square ±1 
matrices, their Gram matrices and their 
determinants 

 We decided to investigate rectangular ±1 
matrices and were going to look at 
determinants but got interested in Gram 
matrices along the way for their own sake 



 We started with random ±1 matrices, 
computed their Gram matrices and looked at 
what we got 

 We found Gram matrices like this: 
 



 ‘n’s on the diagonal 
 Symmetry 
 All entries either even or odd, and from the 

set {-n, -n+2,…,n} 
 
 
 

 And we can prove them all, so it’s a Theorem 



 Take any k x n matrix, called R: 
 

 
R=  

 
Our definition of Gram matrices is that G= RRT 
So, to get the ijth entry of the Gram matrix, we 
take the dot product of row i with row j, i.e: 
Gij=ri·rj  
Similarly, for entry Gji=rj·ri = ri·rj = Gij 
Hence, Gram matrices are always symmetric. 



 We considered 2 x n ±1 matrices for n=1..10 
 And 3 x n case 
 And 4 x n case 
 And 5 x n case 

 
 And then the computer went crazy 



 With the previous theorem, we focused on the 
entries on the right hand side of the main 
diagonal 

 As all of these entries came from the set      
{-n, -n+2,…, n}, we could code these entries 
in their respective base and add them up, 
giving each matrix its own ID and allowing us 
to find the frequency each matrix occurred 



 Take the Gram matrix G= 
This comes from a 3x3 ±1 matrix, so the 
possible entries off the main diagonal come 
from the set {-3, -1, 1, 3}->{0,1,2,3} in base 4. 
Doing the appropriate sum allows us to create 
an ID for each distinct Gram: 
 



Curiously, all possible Grams occurred 
subject to our Theorem  



 Furthermore, they occurred with the following 
frequencies: 

 
 

    2                  2 

         4                8                    4 

       8              24                24                    8 



 
 

2 2 

4 8 4 

8 24 24 8 

16 64 96 64 16 

                                                           …Anyone notice anything? 



2 (1 1) 

4 (1 2 1) 

8 (1 3 3 1) 

16 (1 4 6 4 1) 

Pascal’s Triangle in disguise! 



Multiplying a column by -1 doesn’t change the 
Gram for a 2 x n R-matrix! 
 Proof: 
Let’s begin with any 2 x n matrix R= 
 
Now, take any column and multiply by -1: 
Rˈ=  
 
Finding the Gram: G= 
 

 



 G=  
 
      
     = 
 

Which is the same Gram that comes from a ±1 
matrix where the first column isn’t multiplied 
by -1. There are 2n choices of sign change of 
columns. 



 As multiplying columns by -1 doesn’t change 
the resulting Gram matrix, we can reduce the 
number of R-matrices used to find all Grams 
by making every entry in the first row +1. 
 

 So we made our program more efficient by 
applying this. 



Remember, first row all +1s now! 
 
Then look at the number of ways to put -1 in 
the second row: 
 
2x1 case:  
                    
                    
Binomial coefficients: 

+ - 
0 “-”    1 “-” 



 2x2 case:  
 

 
                    
2x3 case:  
 
 
 
 
                   

- 

- - - 

0 “-”        1 “-”          2 “-”s 

- 

- 

- 

- - 

- - 

- - - - - 

0 “-”               1 “-”              2 “-”s               3 “-”s 



1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 



Interestingly, not all possible Grams occur. 
 
3x1 case: Out of 8 possible Grams, only 4 occur 
each with a frequency of 2 
 
3x2 case: Out of 27 possible Grams, only 10 
occur with a frequency of: 4 8 4 8 8 8 8 4 8 4 
 
3x3 case: Out of 64 possible Grams, only 20 
occur with a frequency of: 
 
 
 

8 24 24 24 8 24 48 24 24 48 24 24 24 48 48 24 24 8 24 24 8 



 Once again, we can take out powers of 2 and 
now end up with something which contains 
Pascals triangle: 
 
 
 
 

This can be explained in a similar way to that 
of the 2xn cases, it just has an extra row of 
possible ±1s! 

2 (1 1 1 1) 
4 (1 2 1 2 2 2 2 1 2 1) 

8 (1 3 3 1 3 6 3 3 6 3 3 3 6 6 3 3 1 3 3 1) 



+ + + …………………………….+ 

The first row is all +1s 



+ + + …………………………….+ 
+………………+ -……….………- 

Now we’ll arrange the second row 
so all the +1s are on the left. 



+ + + …………………………….+ 
+………………+ -……….………- 
+……+ -……- +……+ -……- 
In the third row, within each 
“block”, arrange all +1s on the left. 



 
 
 
 
 
2nd row: k minuses, means     possibilities 
3rd row: i minuses in the left block (length n-k), 
and j minuses in the right block means 
possibilities. 
 
 
 

+ + + …………………………….+ 
+………………+ -……….………- 
+……+ -……- +……+ -……- 



 
e.g. when n=2:  

1 2 1 2 2 2 2 1 2 1 



 2xn:   
 

 3xn:  



 2xn:  

 3xn:  

 4xn: 
. 
. 
. 

 



 2xn:  

 3xn:  

 4xn: 
. 
. 
. 

This is nice, but gets intricate… 
…so we decided to look at a simpler question 

 



 For 3xn, remember we had (empirically) 
◦    n=1: 4 out of 8  
◦    n=2: 10 out of 27 
◦    n=3: 20 out of 64 
◦    n=4: 35 out of 729 



 For 3xn, remember we had (empirically) 
◦    n=1: 4 out of 8  
◦    n=2: 10 out of 27 
◦    n=3: 20 out of 64 
◦    n=4: 35 out of 125 1 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 



2x1 case: 2= 2
1  

2x2 case: 3= 3
1  

2x3 case: 4= 4
1  

 
 
          Still empirical 

3x1 case: 4= 4
3  

3x2 case: 10= 5
3  

3x3 case: 20= 6
3  



1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 

1 9 36 84 126 126 84 36 9 1 

2xn 

3xn 



1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 

1 9 36 84 126 126 84 36 9 1 

2xn 

3xn 

4xn ? 



We have: 
 2xn: #Grams = 

 
 3xn: #Grams = 

 

 
 



Because… 



But… 



 8, 36, 120, 329, 784 
 

 Unfortunately, this does not occur in Sloan's 
online Encyclopedia of Integer Sequences:   



 We are beginning to hit the limits of how far 
we can investigate using our C-program. For 
example, the 6x3 case is causing the 
program to crash 



So we still have 
mysteries to investigate 

further! 
 

Thanks for your attention 
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