Offprint from
THE QUARTERLY JOURNAL OF
MATHEMATICS

OXFORD SECOND SERIES

Volume 9, Number 36, December 1958

OXFORD
AT THE CLARENDON PRESS
Subscription (for four numbers) 55s. post free



THEOREMS ON SOME METHODS OF
SUMMABILITY

By D. BORWEIN (S8t. Andrews)
[Received 26 September 1957]

1. Introduction

I commeNCE with a description of notation and terminology and give
definitions of some of the matrices and methods of summability con-
sidered in this note.

Suppose throughout that s, s, (n = 0, 1,...) are arbitrary complex
numbers, that A >> —1, and that
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The Hausdorff matriz H. Let {u,} be a sequence of real numbers
and let
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Denote the matrix of the linear transformation from {s,} to {¢,} by H,
and write H(s,) for t,. Then H is a Hausdorff matrix which is said to
be ‘generated by the sequence {#n}’. I use the same symbol for both
matrix and associated Hausdorff summability method, ie. T write
8, > & (H) to mean that H(s,) »s. If u, £ 0, the Hausdorff matrix

generated by {1/u,} is denoted by H-1. t

The product method AyH. Write s, - s (4, H) if H(s,)—>s (4,).

The Holder matriz (H,«). For any real o, this is the Hausdorff
matrix generated by the sequence {(n--1)-}.

The Cesaro matrixz (C,a) (x > —1). This is the Hausdorff matrix
generated by {1/e}}. In the specified range only, it is the matrix of
the Cesaro method (C, «) [Hardy (6) 251]; and
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Quart. J. Math. Oxford (2), 9 (1958), 310-16.
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The matriz (C*,«). T define this to be the Hausdorff matrix generated
by {1/e2} when o > —1, and by {e;*} when « << —1, so that
(C, ) (a0 > —1),
(%) = |
(C,—a)t (o< —1).
The matriz (C, o, B) (B > —1, «+p > —1). I use the notation
1 =
S%’B = ez_hs z E?p-} EES,”

=0

and denote by (C,a, ) the matrix of the linear transformation from
{s,.} to {s2F}. Note that, for o« > —1, (0, ,0) = (0,a).

Suppose that P and ¢ are summability methods (or Hausdorff
matrices). P is said to be regular if s, — s (P) whenever s, — s. .If
s, — s (P) whenever s, - s (@), P is said to include Q, an.d we write
P>@Q If P2 @Qand @ 2 P, Pand ¢ are said to be equivalent, and
we write P ~ @.

The following results are known.

(I) If H is a regulor Hausdorff matriz, then AyH = A,. .

[A = 0, Hausdorff (7) 191; see also Szész (11); A > —1, Amir (2)
376; see also Borwein (3) 222; A = —1, Borwein (5) 218.1]

(II) 4,2 42 (C,y) (B>a=—1;y > —1).

[Borwein (3) and (4) 348.]

(ID) 4)(C,B) 2 A\(Cra) 2 (Cy) A=0; § > > —1;y > —1).

[Amir (1); see also Lord (8) 243.] |

In § 2 of this note the result (I) is extended; also, conditions are
obtained which are sufficient for 4, H to include K when H and K are
Hausdorff methods.

In § 3 it is proved that (C*,«) ~ (H,«) for all real «; and that, for
B>—1, atB > —1, (C,a,B) is a Hausdorff matrix equivalent to
(E*, ).

In § 4 the results of § 2 and § 3 are applied to the method 4,(C%*, o).
It is proved, inter aliz, that (III), with C* in place of C, is true er.len-
ever A == —1, B > «, and that the methods A_,, 4,(C*, «) are equiva-
lent for all @ < 1.

2. The method 4, H
Suppose in what follows that H, K are Hausdorff matrices generated

respectively by the real sequences {u,}, {v,}, and denote by HK bot.h
the matrix product and the associated summability method. Tt is

—?

T See the concluding remarks.
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familiar that HK is a Hausdorff matrix generated by the sequence
{ttn v} and, consequently, that HK — KH. Further, it is known and
easily proved that, when y, % 0, K > H if and only if KH-1 is regular.

The above results [for proofs see Hardy (6) ch. xi] are used without
special mention in the rest of the paper.

Teeorem 1. If u, + 0 and Ay, > KH-, then A H = K.

Proof. Suppose that s, — s (K) and let ¢, — H (8,)- Then

K(s,) = KH-\(t,) > s, sothat f,—>s (KEH=1),

It follows that ¢, — ¢ (4,), i.e. s, - s (4, H); and the proof is complete.

TurorEM 2. If either (i) H is regular or (i) p, + 0 and 4, o H,
then Ay H is regular.

Proof. Since, by (IT), 4, is regular, it follows from (I) that 4, H is
regular when (i) is satisfied. When (ii) is satisfied the result follows
from Theorem 1.

The next theorem is an extension of (I).

Tuworem 3. If H is regular, then AyKH 2 A, K.

Proof. Suppose that s, — s (4, K), so that t, = K(s,) >s(4,). Hence,
by (1), H(t,) = KH(s,)— s (4;). The theorem follows.
An immediate corollary of Theorem 3 is the theorem:

TeroreEm 4. If K = H and ,, # 0, then A\ K = Ay H.

3. The matrices (H, «), (C*, a), (C, o, B)
It is known that the Holder matrix (H,$) is regular for 8 = 0 [(6)
ch. xi], and it is evident that, for all real , 3,

(H,a)(H,B) = (H,o1B).
Hence, for § > 0 and all real «,
(H,x+3) 2 (H, ).
Further, it is known [(6) Theorem 211] that, for « > —1,
(H,0) ~ (C, ).
Since, for « > —1, (C*,a) = (0, «); and, for « < —1,
(O%, @) = (0, —a)! o (H, —a)t = (H, o),

we obtain
TaEOREM 5. For all real «, (C*,«) ~ (H, o).
Immediate consequences are the theorems:
THEOREM 6. For o > B, (0%,a) 2 (C*, B).
TrrOREM 7. For all real o, B, (C*, a)(C*,B) ~ (C*, a+B).
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The cases « > —1 of Theorem 5 and « > f8 > —1 of Theorem 6
are, of course, standard. The cases o = —1, —2,... of Theorem 35,
—1 > a>pf of Theorem 6, and o« > —1, 8 > —1, a}f8 > —1 of
Theorem 7 have been given respectively by Lyra (9), Mears (10), and
Zygmund (12).

We now prove

THEOREM 8. If B > —1, a8 > —1, then

(C,0,8) = (C,x+B)(C, B)7,
so that (C, «, B) is the Hausdor [f mairiz generated by the sequence {eB [eX+F}.

Proof. It is well known and easily verified that, for § > —1,

ohf = =1,

1 = (s.4
LS et e
whence (C, o, B)(C, B) = (C, «--B). The theorem follows.

In consequence of Theorems 5 and 8 we have

THEOREM 9. For 8 > —1, a8 > —1, (0, «,8) = (C*, a).

The case @ > —1, B > —1, a+fS > —1 of this result was proved in
essence by Zygmund (12).

So far we have considered the Cesaro method (C, «) only in the range
a > —1. The standard definitiont of this method in the range « < —1
187

8, > 8 (C,a) if i e ls, = sfto(n®) and s, —>s (4,).
r=0

This definition is due to Hausdorff (7) who proved the methods (O, «)
and (H, «) to be equivalent (for all real «).

Hence, in virtue of Theorem 5, we have

TrEOREM 10. The methods (C,«) and (C*,«) are equivalent for all
real o.

The case «x = —1, —2,...
[(9), Satz 1].

of this result has been proved by Lyra

v \
‘ ; .4 The method A4,(C*, «)

In what follows I use the notations

1
— ko o—1
S% T Sna = €n—rSr (O‘ = _1)}
€y =
r=0
k3
=2 g% (a< —1)

I also use the first notation with a in place of s.

T For a full discussion of this and other definitions see Lyra (9).
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Note that s& = (O, a)(s,) (x > —1), and, in view of Theorem 8 with
B = —a, s = (C%,a)(s,) (all real ). [Cf. Mears (10), (11).]

The next theorem generalizes (III).

TuaeoreM 11. If « > B and y is real, then

ANC*o) 2 45(C*,B) 2 (C*,y).

Proof. The first inclusion is a consequence of Theorems 4 and 6.

Further, in virtue of (IT) and Theorems 6 and 7, we have
Ay 2 (C*,y—PB) = (C%,y)(0%, B),

so that, by Theorem 1, 4,(C*, ) 2 (C*, ).
A corollary of Theorem 11 is that A,(C*, ) is regular for all real «.
The next theorem shows that for § > —1 the strength of the method

Ag(C*, a+B) is independent of B. ‘1’.

THEOREM 12. If B > —1 and o is any real number, then
A(C*, ) =~ Ap(C*, a-pB).
Proof. It follows from the formal identity

i 82" = (1—a)P f fsfar (0<x<l; B> —1),
n=0

n=0
that, if one of the series is convergent throughout the interval (0, 1),
then so is the other. Consequently, s, — s (4,) if and only if sf — s (4p);
and so s§* —> s (4,) if and only if (C*, B)(s3¥) = s (4p). Hence,
AO(G*: 0‘") = A,B(O*s Oi)(O*, I8)
and, since (C*, «)(C*,8) = (C*, «-+pB), application of Theorem 4 yields
the required result.
Put f = —« in the above theorem to get the corollary

A(Ct ) = A, (a< 1),
je. for o < 1, -
(I—z) > sf*gn>s as z—>1— :
=0
if and only if E (N

e8]
(1—a)'=* > e %,a"—>s a8 x> 1-—,
7n=0

The final two theorems are concerned with the method 4_,(C, «).

3
g,=" S =" )
7=0

For a > 0, T define the logarithmic method of summability (L, «) as

follows: 2
g, 8(L,0) O ¥ @, =4 [La]

n=0

Suppose that
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1 o
. o 1 —
if > arxx™l oz as x—>1—.

~ log(1—x) —

Note that the methods (L, 1) and A_, are identical.
We require two lemmas, of which the first is known [(5) Theorem 2]
and the second is a simple consequence of a known result [(5) Lemma 1].
Lemma 1. A_; 2 4,0,1).
Lemma 2. Ifp > 0,9 > 0and s, > s (A_;), then
n+p
n+q
TaEOREM 13. For a > 0, (L,a) =~ A_;(C,a—1).
Proof. Since s, — s (L, a) if and only if (n+41)af — as (4_,), the re-
quired result is a consequence of Lemma 2 and the easily verified
identity - o

s, —~ ¢ (4_).

(x > 0).

THEOREM 14. For a >8>0, (L,a) = (L,8) 2 44(C,B).
Proof. In virtue of Theorems 11 and 13,
(Lya) 2 (L,B) = A_,(C,p—1).
Further, by Lemma 1 and Theorems 4 and 7,
A4_4(C,B—1) 2 4,(C,1)(0,8—1) = Ay(C, f).
This completes the proof.
I am indebted to the referee for suggestions which enabled me to

simplify the presentation of the material in § 3, and also for supplying
most of the references there given,

Remarks on resulty (I) (added 10 July 1958). Professor C. T.
Rajagopal has kindly sent me a reprint of his paper ‘ Product of two

‘summability methods’, J. Indian Math. Soc. 18 (1954) 89-105. This

paper, which I had not seen previously, predates my paper (5) but not
Amir’s paper (2). In it Professor Rajagopal deduces, from his Theorem 1,
the case A > —1 of (I), and also (without giving details) a result
equivalent to the following:

of H is a regular Hausdorff matriz and ¢, = H(s,), then t, ., — s (A_,)
whenever s,., -8 (4_,).

This is proved directly in (5) and is the key result used there in
establishing the case A = —1 of (I).
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