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Just over a century ago, in 1897, Tauber [11] proved the following “corrected
converse” of Abel’s theorem:

Theorem T. If (i)
∞∑

n=0

anxn → � as x → 1−, and

(T0) nan = o(1),

then (ii)
∞∑

n=0

an = �.

Abel’s theorem, of course, is the familiar result that (ii)⇒(i) without condition
(T0). Subsequently Hardy and Littlewood proved numerous other such converse
theorems, and they coined the term Tauberian to describe them.

In summability language Theorem T can be expressed as:

If
∞∑

n=0

an = � (A), where A denotes the Abel summability method, and if the

Tauberian condition (T0) holds, then
∞∑

n=0

an = �.

The simplest example of an Abel summable series that is not convergent is given

by an := (−1)n, for which
∞∑

n=0

an =
1
2

(A).

Tauber’s innocent looking theorem was the start of a veritable Tauberian jungle
of results which Korevaar, in the book under review, has made a very worthwhile
effort to organize and present in a coherent manner. The book’s 483 pages are
densely packed and there are around 800 references. Rather than trying for a
comprehensive description of its contents, this review will cut a reasonably narrow
path through part of the jungle, in the hope that it will give the non-expert reader a
view of what the subject is about. There are a few proofs, but they can be skipped
by the reader primarily interested in the statement of the results.

In 1914 Hardy and Littlewood [3] proved the following generalization of Theo-
rem T in which the strong “two-sided” Tauberian condition (T0) is replaced by the
much weaker “one-sided” condition (T1):

Theorem H-L. If
∞∑

n=0

anxn → � as x → 1−, and

(T1) nan ≤ C, a positive constant,

then
∞∑

n=0

an = �.

Note that by changing sign throughout, the Tauberian condition (T1) could be
expressed as nan ≥ −C. An interesting, and non-trivial, illustration of the potency
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of Theorem H-L is a proof that the series

∞∑
n=1

1
nz

,

which is absolutely convergent and defines the Riemann zeta function ζ(z) when
�z > 1, is not Abel summable on the line z = 1 + it. This amounts to observing
that

∞∑
n=1

1
n1+it

cannot be Abel summable, for if it were, Theorem H-L (or even a weaker two-sided
version of it) would imply that the series is actually convergent, which it cannot be
since Hardy [2, §7.9] has shown that, for fixed t �= 0,

N∑
n=1

1
n1+it

=
i

tN it
+ � + o(1) as N → ∞,

where � is finite and independent of N. In fact � turns out to be ζ(1 + it).
Karamata [6] simplified Hardy and Littlewood’s proof of Theorem H-L in 1930,

and in 1952 Wielandt [15] elegantly modified Karamata’s proof as follows:

Suppose, without loss in generality, that
∞∑

n=0

anxn → 0 as x → 1− . Let F be the

linear space of real functions f for which
∞∑

n=0

anf(xn) → 0 as x → 1 − .

Then every real polynomial p with p(0) = 0 is in F. Let g := χ[1/2,1], the char-
acteristic function of [1/2, 1]. Given ε > 0, there are real polynomials p1, p2 with
p1(0) = p2(0) = 0 and p1(1) = p2(1) such that p1(x) ≤ g(x) ≤ p2(x) for 0 ≤ x ≤ 1,
and ∫ 1

0

p2(t) − p1(t)
t(1 − t)

dt <
ε

C
.

Then, by (T1),
∞∑

n=0

ang(xn) −
∞∑

n=0

anp1(xn) ≤ C

∞∑
n=1

p2(xn) − p1(xn)
n

= C

∞∑
n=1

xn(1 − xn)
n

q(xn) ≤ C (1 − x)
∞∑

n=0

xnq(xn),

where

q(x) :=
p2(x) − p1(x)

x(1 − x)
=:

m∑
k=0

bkxk.

Further, as x → 1−,

(1 − x)
∞∑

n=0

xnq(xn) =
m∑

k=0

bk
1 − x

1 − xk+1
→

m∑
k=0

bk

k + 1
=

∫ 1

0

q(t) dt <
ε

C
.
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Hence

lim sup
x→1−

∞∑
n=0

ang(xn) < ε,

and likewise

lim inf
x→1−

∞∑
n=0

ang(xn) > −ε.

It follows that g ∈ F, and therefore, for N = 	− log 2/ log x
,

∞∑
n=0

ang(xn) =
N∑

n=0

an → 0 as x → 1 − .

Another proof of Theorem H-L is by means of Wiener’s powerful Tauberian
theorem involving Fourier transforms [16] which he published in 1932:

Theorem W. If K ∈ L(−∞,∞), φ ∈ L∞(−∞,∞),∫ ∞

−∞
e−itxK(t) dt �= 0 ∀x ∈ (−∞,∞), and

∫ ∞

−∞
K(x − t)φ(t) dt = o(1) as x → ∞,

then, ∀H ∈ L(−∞,∞),

(1)
∫ ∞

−∞
H(x − t)φ(t) dt = o(1) as x → ∞.

To prove Theorem H-L with � = 0 by means of Theorem W, let

s(x) :=
∑
n≤x

an, and F (x) :=
∞∑

n=0

anxn.

Then, by hypothesis, F (x) = o(1) as x → 1−, and it follows (fairly easily) from
this and (T1) that s(x) = O(1), and hence that, for t > 0,

F (e−t) =
∞∑

n=0

ane−nt =
∫ ∞

0

e−tx ds(x) = t

∫ ∞

0

e−txs(x) dx.

Now take φ(x) := s(ex) and K(x) := exp(−x − e−x). Then∫ ∞

−∞
K(x − t)φ(t) dt = F

(
exp(−e−x)

)
= o(1) as x → ∞,

and, ∀x ∈ (−∞,∞),∫ ∞

−∞
e−itxK(t) dt =

∫ ∞

0

uixe−u du = Γ(1 + ix) �= 0.

Further, φ(x) = O(1), and it follows from (T1) that, given δ > 0, ∃x0 such that

φ(y) − φ(x) ≤ 2δ for x0 ≤ x ≤ y ≤ x + δ.

Taking H := δ−1χ[0,δ] and then H := δ−1χ[−δ,0] in (1), we obtain respectively

lim sup
x→∞

φ(x) ≤ 2δ and lim inf
x→∞

φ(x) ≥ −2δ,

from which it follows that φ(x) → 0 and hence that s(x) → 0 as x → ∞.
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Wiener’s theorem yields Tauberian theorems for many standard summability
methods.

Karamata proved various Tauberian theorems, the most famous being the fol-
lowing one [7] about Laplace transforms, which he proved in 1931:

Theorem K. Let A be a non-decreasing, unbounded function on [0,∞) with A(0)
≥ 0, and let L be a slowly varying function (i.e., ∀t > 0, L(xt)/L(x) → 1 as
x → ∞). Then, for σ ≥ 0,

B(x) :=
∫ ∞

0

e−t/xdA(t) ∼ xσL(x) as x → ∞

(i.e., B is regularly varying with index σ) if and only if

A(x) ∼ xσL(x)
Γ(1 + σ)

as x → ∞.

From this theorem Karamata derived:

Theorem K1. Let A be a non-decreasing, unbounded and regularly varying function
on [0,∞) with A(0) ≥ 0, and let the function s be continuous and bounded below
on [0,∞). If

(2)
∫ ∞

0

e−yts(t) dA(t) ∼ �

∫ ∞

0

e−yt dA(t) as y → 0+ ,

then

(3)
1

A(x)

∫ x

0

s(t) dA(t) → � as x → ∞.

This is also a Tauberian theorem since (3) ⇒ (2) without the one-sided bound-
edness condition on s. It follows from a theorem established by Korenblum [8] in
1955 that the condition in Theorem K1 that A be regularly varying can be replaced
by the weaker condition

(4)
A(y)
A(x)

→ 1 when
y

x
→ 1, y > x → ∞

(i.e., log A(x) is slowly oscillating). From this extension of Theorem K1, the reviewer
[1] was able to prove:

Theorem DB. Let A be a non-decreasing, unbounded function on [0,∞) with
A(0) ≥ 0, and let the function s be continuous [0,∞). If (2) and (4) are satisfied,
and in addition

(5) lim inf{s(y) − s(x)} ≥ 0 when
y

x
→ 1, y > x → ∞,

then s(x) → � as x → ∞.

The proof uses a variant of a method developed by Vijayaraghavan [12], [13] in
1926 (see [2, Theorem 238]) to first deduce that s(x) is bounded. Theorem DB can
be specialized by taking

A(x) := n for n ≤ x < n + 1, n = 0, 1, . . . , and

s(n) := sn :=
n∑

k=0

ak,

to obtain as a corollary the following result which Schmidt [9] established in 1925:
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Corollary. If

(6)
∞∑

n=0

sne−ny ∼ �
∞∑

n=0

e−ny =
�

1 − e−y
as y → 0 +

and

(7) lim inf(sm − sn) ≥ 0 when
m

n
→ 1, m > n → ∞

(i.e., sn is slowly decreasing), then sn → �.

Note that (6) is equivalent to

(1 − x)
∞∑

n=0

snxn =
∞∑

n=0

anxn → � as x → 1−

and that nan > −C ⇒ (7), so that the corollary generalizes Theorem H-L.
Another classical Tauberian result concerns the Borel method B defined by:

∞∑
n=0

an = � (B), or sn → � (B),

if e−x
∞∑

n=0

snxn

n!
→ � as x → ∞, where sn :=

n∑
k=0

ak.

Theorem B. If
∞∑

n=0

an = � (B), and

(T2)
√

nan ≤ C,

then
∞∑

n=0

an = �.

The version of this result with (T2) replaced by the stronger two-sided condition√
nan = O(1) was proved by Hardy and Littlewood [4] in 1916. In 1925 Schmidt

[10] showed that (T2) can be relaxed to

lim inf(sm − sn) ≥ 0 when 0 <
√

m −
√

n → 0, n → ∞.

Various Tauberian theorems have been used in assorted proofs of the prime
number theorem. A particularly interesting one is the following one proved in 1931
by Ikehara [5], a student and colleague of Wiener’s:

Theorem I-W. Suppose that the function F has the following properties:
(i) For �z > 1, F (z) =

∫ ∞
0

e−ztA(t) dt, where A is a non-decreasing function
with A(0) ≥ 0.

(ii) For �z > 1, z �= 1, F (z) = G(z) +
1

z − 1
, where G(z) is continuous on the

half-plane �z ≥ 1.

Then e−tA(t) → 1 as t → ∞.

The prime number theorem can be proved with the aid of Theorem I-W as
follows: Let

A(t) := ψ(et), where ψ(x) :=
∑

pn≤x

log p.
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The p’s in the sum defining the Chebyshev function ψ are the odd primes, and it
is known that the prime number theorem, viz.,

π(x) :=
∑
p≤x

∼ x

log x
as x → ∞,

is equivalent to ψ(x) ∼ x as x → ∞.
For �z > 1, we have [14, ch. V, §17] that

F (z) =
∫ ∞

0

e−ztA(t) dt =
∫ ∞

1

u−z−1ψ(u) du = − ζ ′(z)
zζ(z)

= G(z) +
1

z − 1
,

the function G satisfying the requirements of Theorem I-W since the Riemann zeta
function ζ(z) has no zeros in the half plane �z ≥ 1 and is holomorphic in the whole
plane, except for a simple pole at z = 1 with residue 1. Hence, by Theorem I-W,
e−tψ(et) → 1 as t → ∞ and so ψ(x) ∼ x as x → ∞.

Most of the above topics are dealt with in the book (though not always in the
same manner). Among the many others there are the spectacular “high indices”
theorems, Gelfand’s algebraic treatment of Wiener theory and the author’s own
distributional approach. There is also his new unified theory for the Borel and
“circle” methods of summability. And much more, including a chapter on Tauberian
remainder theory. Though not an easy read, the book is a must have for anyone
seriously interested in Tauberian theory.
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