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ON BOREL-TYPE METHODS OF SUMMABILITY
D. BorwEIN

1. Introduction. Suppose throughout that I, @, (n=0,1,...) are
arbitrary complex numbers, that « is a fixed positive number and that
is a variable in the interval [0, c0). Let

) T © n
a, X Sn T

= I Menty "B =2 ey

We shall be concerned with Borel-type methods of summability
(B, «), (B, ) defined as follows:

n
8, = xa, ax)
=l

s, 1 (B, @) if lim rrta(t)da:l,

z—>0 |0

sn—>l(§, «) if lim ae~*s(x) = 1.
T—> 0
Note that (B’, 1) and (B, 1) are respectively the Borel integral and the
Borel exponential methods.

The first of the above definitions appears in Hardy’s book ([2], 222).
The exponential-type method (B, «) there defined* as a companion to
(B, o) differs from the method (B, @), which seems to have been first
considered, in this context, by Wlodarski [4].

It is known ([2], 82-3) that (B’, «) is regular, ¢.e. s, +(B’, «) whenever
s,—1; and it is a trivial consequence of known results ([2], Theorem 33;
and Lemma 3(b) below) that (B, o) is also regular.

A known result, concerning the relative strengths of different (B’, A)
methods, is: :

If a>pB>0, s,>1(B, «) and %anmﬁ”/I‘(Bn—l— 1) is convergent for all
0
x> 0, then s, 1 (B, B).

The case 28 = « of this result is due to Hardy [3], and the general case to
Good [1].
A companion result is:

If o>B>0,s,-1(B, «) and Esnmﬁn/l’(ﬁn—l—l) is convergent for all
0
x>0, then s, 1 (B, B).

The case a=2% B=2%" (k=01 ..; m=1, 2, ...) of this result
has been stated by Wlodarski [4], and I have proved the general case in a
paper to be published shortly (in Proc. Cambridge Phil. Soc.).

* g, (B, «) if lim e=*3o(n/a)a"/n! = I, where o(t) = = a,.
= 0 rgt
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THEOREM. In order that
5,1 (B, ),
it s mecessary and sufficient that
s,~1(B, «) and a,—>0 (B, «).

The case o= 1 of this theorem is known ([2], 183).
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The above results have been included for interest only and are not used
in the rest of the note, the object of which is to prove the following :

2. Preliminary results. We suppose in what follows that f(z) is a

continuous function for x >0, and use the notation

fole) =@, )= | —tp S @)de (8> 0).

0

This notation will also be used with other letters in place of f.

We require three lemmas.
Lemma 1. If
(i) $(x) ts continuous for x>0,

(ii) lim ¢(x) =0,

T—>0

(i) | (@) d < o,

(iv) lim f(z) =1,

XH— 0

then lim j: 7(6) la—t) dt = zﬁqs(t)dt.

T—r 0

This is a special case of a standard result ([2], Theorem 6).

Lemma 2. (a) If lim e®f(x) =1 and 8 >0, then lim e—*f;(x) =1.

T—>

Z—>0 x—>o0J0

Proof. Let F(z)= r e~tf(t)dt. Then
0
T'(8) e~ (w) = r"e—t F(t) (z—t)-1 a0
0

and so ') j$e—‘fa(t) dt = ng(t) (x—t)-Le—@Ddi,
0 0

(b) If lim jme—f F(t)dt =1 and 5> 0, then lim rw £,(t) dt
0
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Further #%-1e—% is continuous for # > 0 and tends to zero as x—+®;

also -
5 at-le—2dx = I'(6).
0

In virtue of Lemma 1, results (a) and (b) follow.

LevMA 3. If 8> 4, N is the infeger such that N <8/4 <N+1, and
@ 00
&)= Ty
then
@ @)= = et o)),
where w, = e¥nrlé
(b) lim Se=f(z)=1;
0) e{f{@)—fi(®)} = 0(e),

where y = 2 sin? = /8.

Proof. Results (a) and (b) are known ([2], 198), (b) being an immediate
consequence of (a). In view of (a),

N
fle)—fi@®)= = (1—w_,)e"¥s+0(14x) = O(e==Cnid),
n=—N
and result (c) follows.
Next, we prove that the following two statements are equivalent:
a LT

A) T

L ToaFD is convergent for all x >0,

@ 8,, %"

First assume (A). Then, given e > 0, there is a positive integer N such
that, for n > N,

|a,| < e* T'(an+-1) < 1T (ant-u--1);

is convergent for all 2= 0.

so that, for n > N,
] < 2 [+ (o H) @ Dfan+ 1),
Hence, for all » sufficiently large,
|8a] < (2 T(an+-1),
and (B) follows.
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Now assume (B). Then, since lim {I'(an-+a+1)/T(and-1)P" =1,

T=> 0

3 s, z*+e T (an+a-1) is convergent for all > 0. Further,
n=0
Sty LN SR L SR gty
n=0 F(an—l—l) nmo L'(an+1)  pop '(an+a+-1)’
and (A) follows.

We conclude this section with two useful identities. Suppose that
(A) and (B) hold. It follows from (1) that

(1)

CL(LE) (.’B)—-— "3 —ijj tom.( —t)“_l dt
= a(z)— F%*)E: (w—t)Ldt § fmﬁ;)
= §(x)—8,(), (2)

the inversion being legitimate since

e -1 5 ISTL g*"
j’o =g dtnizlo 1_‘(Oﬁ"f‘i‘l)<

Hence,
r eta(t)dt = re—‘ SN 5 “dtj’ (t—u)*ts(u)du
0 0 ['(e)
z 1
N o )1 p—(—)
_Le s(t F(aj s(u duj (t—u)le dt

1 (=, B
—1 mjoe s(u)du L_ut Le—tdt. (3)

3. Proof of the theorem. Necessity. The hypothesis is:

lim ae®s(x) =1

T—>0

In virtue of (2) and Lemma 2(a), it follows that

lim e~*a(x) =0.

>

o0
Consider now identity (3). Note that 5 t=letdi is a continuous
@

function for 2 > 0 which tends to zero as #—c0, and that

rdx f ® Tt = T (e,
(1} x



132 D. BorwEIN

Hence, by Lemma 1,

lim r ta(t)dt=1.
0

L—>®

This completes the proot of the necessity part of the theorem.
Sufficiency. The hypotheses are:

Jim 5 “eta(t)dt =1, (@)
x> J 0
lim e*a(x) = 0. (5)

Suppose that
o =8> 4,

where k is an integer; and let

b(x) = Y tu(@), Bl)= Swe—tb(t) &, fl@)= % i
e 0 ’ neo L (dn1)
$@) = & e hra@).
Then, in virtue of (4) and Lemma 2(b),
lim B(x)=kl; (6)

and, by (2),
b(x) = s(x)—s;(x).

Also,
1
= )24
f&—l(x) IP(S?% 6+1)F(8—-1)5 (-73 t) 2pin=d lt
© dn—1
s
n=1 P(S’fb)
Further, it is easily verified that lim s;,(x)=0, and so

m—>

5(0) = £ {on@)—sumss(@l = 2 (o)

= 1 Sn—1 L s
,EII‘(Sn)jt b(w—1) di

= j Cbe—1)fs-a0)dh

the inversion being legitimate since S |b(x—1)|fs—y (£)dt < 00. A partial
integration yields

2y (z) = EZB(x—t)qS(t)dt. (7)
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We prove next that ¢(z) satisfies the conditions of Lemma 1. By
Lemma 3(b),
lim 8e~*f(x) = 1.

z—>®

Hence, by Lemma 2(a),

Iimr¢;(t)dt lim ==, 4(x) = 1/3

>0

and lim ¢(z) = hm e‘m{ fia(@)—fs1(2)} =

&£T—>r0

Further ¢(z) is continuous for x>0, and, in view of Lemma 3(c),

[[1s@lde < iy |1 oo [ @—tpsis0-pla

= S?ﬂf(t) —f,(0)dt < 0.

Consequently, it follows from (6) and (7), by Lemma 1, that

lim ae—®s,(x) =1.
T—>®©

Note that so far we have only used hypothesis (4). To complete the

proof we have only to observe that, in virtue of (2) and Lemma 2(a), a
consequence of hypothesis (5) is that

lim e~%{s(x)—s;(x)} = 0;

x—r0

whence lim ae=s{zx) =1.
-+
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