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1. Introduction. Let ¥ @, be a given series and let
n=10
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With Flett [4], we say that the series is summable | C, k, g [, k> -1, p = 1, g real, if
a0
X merwd | AQE P < a0,
n=1

where 40P = CP —C% . Summability | C, k, 0 |, is identical with absolute Cesiro summa-
bility (C, k), or summability | C, k |, as defined by Fekete [3].

Absolute Rieszian summability (B, k), or summability | R, k|, has been defined by
Obreschkoff [5, 6] as follows : Za, is summable | R, k |, k > 0, if
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1 du
It is therefore natural to say that Za, is summable 'R, k, ¢ |,, k> 0, p = 1, if
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For this definition to be valid it is necessary to impose the additional restriction & > 1-1/p,
as can be seen from the following argument (cf. Boyd and Hyslop [1, 94-5]).
Let 2 <<n <<w << m +1, where n is an integer such that @, = 0. Then, fork > 0,p>1,
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Since the final integral is finite, it follows that
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is infinite unless kp —p > -1, that is, unless & > 1 - 1/p.

The object of this note is to prove the following
TurorEM. For p =1, k> 1-1/p, k= ¢-1/p, Za, is summable | C, k, q |, if and only

if it is summable | R, k, q |
The case p = 1, ¢ = 8 of this theorem has been established by Hyslop [2]. The proof

of the theorem is modelled on the one given by Boyd and Hyslop [1] for an analogous result
(with ¢ = 0) on strong summability. One of their subsidiary results which we use is :

Levma. Ifo, = 0,p =1, A> 1-1/p, then

N n o, D N
T R “<-. K 3‘),
where K is independent of N and a«,.

2. Proof of the theorem. Let p = 1,k > 1-1/p, k=g —-1/p, and let n be a positive

integer.
(i) It follows from an order relation given by Boyd and Hyslop [1, 97], that, for

n<<u<n+l,
? n pk+l AO(k) I
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since k +1/p —¢ = 0; whence
n41 n po+l-1/p | AC(k)I
J‘ qpat+p-1 d O{(’r—l Al —r)r )},
since kp —p > —1.
Tt follows, by the lemma, that there is a posmve number K, such that
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Consequently Sa,, is summable | R, k, ¢ |, whenever it is summable | C, k, ¢ |,-
(ii) Now let m be the integer such that m — 1 < k < m. In virtue of a result established

by Boyd and Hyslop [1, 99], we find that
du}
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since E+1/p~¢ = 0, and — T Ok (w) = 0 for 0 < u << 1. Applying now the lemma with

e +1-1]p d
Oy = J.r w E;L Ok(u) du

and Holder’s inequality, we see that there is a positive number K, such that
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Hence Xa,, is summable | C, k, g |, whenever it is summable | B, &, ¢ |,.
The proof of the theorem is thus complete.
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