Reprinted from the Proceedings of the Glasgow Mathematical Association, Volume 5, Part 4, July, 1962

ON RIESZ SUMMABILITY FACTORS

by D. BORWEIN and B. L. R. SHAWYER

(Received 21 July, 1961, and in revised form 28 November, 1961)

1. Suppose throughout that a, k are positive numbers and that p is the integer such that $k-1 \le p < k$. Suppose also that $\phi(w), \psi(w)$ are functions with absolutely continuous (p+1)th derivatives in every interval [a, W] and that $\phi(w)$ is positive and unboundedly increasing. Let $\lambda = \{\lambda_n\}$ be an unboundedly increasing sequence with $\lambda_1 > 0$.

Given a series $\sum_{n=1}^{\infty} a_n$, and a number $m \ge 0$, we write

$$A_m(w) = \begin{cases} \sum_{\lambda_n \le w} (w - \lambda_n)^m a_n & \text{if } w > \lambda_1, \\ 0 & \text{otherwise,} \end{cases}$$

and $A(w) = A_0(w)$.

If $w^{-m}A_m(w)$ tends to a finite limit as $w \to \infty$, $\sum_{n=1}^{\infty} a_n$ is said to be summable (R, λ, m) .

The object of this note is to obtain conditions sufficient to ensure, when k is not an integer, the truth of the proposition

P.
$$\sum_{n=1}^{\infty} a_n \psi(\lambda_n)$$
 is summable $(R, \phi(\lambda), k)$ whenever $\sum_{n=1}^{\infty} a_n$ is summable (R, λ, k) .

For integral values of k, the following theorem is known [1].

T₁. If

(i) $\gamma(w)$ is positive and absolutely continuous in every interval [a, W] and $\gamma'(w) = O(1)$ for $w \ge a$,

(ii)
$$w^n \psi^{(n)}(w) = O\left\{ \left(\frac{\gamma(w)}{w} \right)^{k-n} \right\} \quad (n = 0, 1, ..., k; \ w \ge a),$$

(iii)
$$\int_{-\infty}^{\infty} t^k \mid \psi^{(k+1)}(t) \mid dt < \infty,$$

(iv)
$$\int_{a}^{w} {\{\gamma(t)\}^{n} \mid \phi^{(n+1)}(t) \mid dt = O\{\phi(w)\}} \quad (n = 1, 2, ..., k; w \ge a),$$

then P.

Other known theorems, which hold for all $k \ge 0$, are

$$T_2$$
. If $\phi(w) = e^w$ and $\psi(w) = w^{-k}$, then P;

 T_3 . If

(i) $\phi(w)$ is a logarithmico-exponential function,

(ii)
$$\frac{1}{w} < \frac{\phi'(w)}{\phi(w)} < 1$$
,

(iii)
$$\psi(w) = \left\{ \frac{\phi(w)}{w\phi'(w)} \right\}^k$$
,

then P;

and T'₃, which is more general than T₃, in that hypothesis (ii) is replaced by

(ii)'
$$\frac{1}{w} \leqslant \frac{\phi'(w)}{\phi(w)}$$
.

 T_2 , which is included in T_3 , is a well known theorem of Hardy [4, 30] and T_3 and T_3 are due to Guha [2], who derived the latter from the former by means of standard results. For integral values of k, the hypotheses of T_1 are satisfied when $\phi(w)$, $\psi(w)$ are as in T_3 and $\gamma(w) = \phi(w)/\phi'(w)$.

Suppose, from now on, that k is not an integer. We shall prove the following theorems as companions to T_1 .

 T_A . If

(i) $\gamma(w)$ is positive and absolutely continuous in every interval [a, W], and $\gamma'(w) = O(1)$ for $w \ge a$,

(ii) (a)
$$\psi(w) = O\left(\left\{\frac{\gamma(w)}{w}\right\}^k\right) \text{ for } w \ge a,$$

(b)
$$w^n \psi^{(n)}(w) = O\left(\left\{\frac{\gamma(w)}{w}\right\}^{p+1-n}\right) \text{ for } n=1, 2, ..., p+1 \text{ and } w \ge a,$$

(iii)
$$\int_{a}^{\infty} t^{p+1} | \psi^{(p+2)}(t) | dt < \infty,$$

(iv) $\phi'(w)$ is positive monotonic non-decreasing for $w \ge a$,

(v) $\gamma(w)\phi'(w) = O\{\phi(w)\}$ for $w \ge a$ or $\{\gamma(w)\}^{n-1}\phi^{(n)}(w)/\phi'(w)$ is of bounded variation in $[a, \infty)$ for n = 1, 2, ..., p+1 according as 0 < k < 1 or k > 1,

(vi) $\phi''(w)/\phi'(w)$ is monotonic non-increasing for $w \ge a$,

(vii) $h_n(w) = \psi(w) \{\phi'(w)\}^{k-n} \{\gamma(w)\}^{-n}$ is positive monotonic in the range $w \ge a$ for n = 0, 1, ..., p, possibly in different senses for different values of n,

(viii) $\phi(w) > c w^{k/(k-p)}$ for $w \ge a$, where c is a positive constant, then P.

 T_B . If T_A (i) to T_A (vii) inclusive hold, and, in addition,

(vii)' $h_p(w)$ is non-decreasing, then P.

It is evident that T_2 , for non-integral k, is included in T_A , and it can readily be shown that, under the hypotheses of T_A are satisfied with $\gamma(w) = \phi(w)/\phi'(w)$ and

 $\phi(w)$, $\psi(w)$ as in T_3 .

We are indebted to the referee for valuable suggestions which led to the above formulation of the results. In the original version of our manuscript we proved that P is a consequence of conditions T_A (i) to T_A (vi) inclusive together with the condition that $h_n(w)$ is a positive monotonic non-decreasing function of w in the range $w \ge a$ for n = 0, 1, ..., p. The argument in § 4 is due to the referee: it shows that the conditions of T_B are in fact more stringent than those of T₄.

2. The following lemmas are required.

LEMMA 1. If $T_A(i)$ and $T_A(v)$, then for n = 1, 2, ..., p+1 and $w \ge a$,

$$\int_{0}^{w} {\{\gamma(t)\}^{n-1} \mid \phi^{(n)}(t) \mid dt = O\{\phi(w)\}}$$
(2.1)

and

$$\{\gamma(w)\}^n \phi^{(n)}(w) = O\{\phi(w)\}. \tag{2.2}$$

Proof. When 0 < k < 1, (2.2) is the same as the operative hypothesis in T_A (v) and (2.1) is a trivial consequence. Suppose that k > 1. Then (2.1) follows from the appropriate part of T₄ (v) by integration; hence

$$\gamma(w)\phi'(w) = \gamma(a)\phi'(a) + \int_a^w \gamma(t)\phi''(t) \ dt + \int_a^w \gamma'(t)\phi'(t) \ dt = O\{\phi(w)\},$$

since $\gamma'(t) = O(1)$, and (2.2) is an immediate consequence. (Cf. [1, Lemma 2].)

LEMMA 2. The nth derivative of $\{g(t)\}^m$ is a sum of a number of terms like

$$A\{g(t)\}^{m-\sigma} \prod_{v=1}^{n} \{g^{(v)}(t)\}^{\alpha_{v}},$$

where A is a constant, and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are non-negative integers, such that

$$1 \leq \sum_{\nu=1}^{n} \alpha_{\nu} = \sigma \leq \sum_{\nu=1}^{n} \nu \alpha_{\nu} = n.$$

This is a particular case of a theorem due to Faa di Bruno [5, I, pp. 89-90].

LEMMA 3. If a_n is real, $a \le \xi \le w$, then

$$\frac{\Gamma(k+1)}{\Gamma(p+1)\Gamma(k-p)}\left|\int_a^\xi A_p(t)(w-t)^{k-p-1} dt\right| \leq \max_{a \leq t \leq \xi} |A_k(t)|.$$

A proof of this lemma has been given by Hardy and Riesz [4, 28].

LEMMA 4. If

$$\overline{\lim}_{w \to \infty} \int_{a}^{w} |f(w, t)| dt < \infty \quad and \quad \lim_{w \to \infty} \int_{a}^{y} |f(w, t)| dt = 0$$

for every finite y > a, and if s(t) is a bounded measurable function in (a, ∞) which tends to zero as t tends to infinity, then

$$\lim_{w\to\infty}\int_a^\infty f(w,t)s(t)\ dt=0.$$

For a proof of this simple result see [3, 50] or [1, Lemma 3].

LEMMA 5. If T₄(iv) and T₄(vi), then

$$\chi(t) = \frac{1}{\phi'(t)} \cdot \frac{\phi(w) - \phi(t)}{w - t}$$

is a monotonic non-increasing function of t for $a \le t < w$.

Proof. We have, for $a \le t < w$,

$$\frac{\chi'(t)}{\chi(t)} = \frac{\{\phi(w) - \phi(t)\} - (w - t)\phi'(t)}{\{\phi(w) - \phi(t)\}(w - t)} - \frac{\phi''(t)}{\phi'(t)}$$

$$= \frac{\phi'(\eta) - \phi'(t)}{\phi(w) - \phi(t)} - \frac{\phi''(t)}{\phi'(t)} \qquad (w > \eta > t)$$

$$\leq \frac{\phi'(w) - \phi'(t)}{\phi(w) - \phi(t)} - \frac{\phi''(t)}{\phi'(t)}$$

$$= \frac{\phi''(\xi)}{\phi'(\xi)} - \frac{\phi''(t)}{\phi'(t)}$$

$$\leq 0.$$

Since $\gamma(t) \ge 0$, the result follows.

3. Proof of T_A. We assume, without loss of generality, that

$$A(w) = 0 \quad \text{for} \quad 0 \le w \le a$$

$$A_k(w) = o(w^k), \tag{3.1}$$

and

and note that, for $w \ge a$, it is sufficient to prove that

$$\sum_{\phi(\lambda_n) \leq \phi(w)} \left\{ 1 - \frac{\phi(\lambda_n)}{\phi(w)} \right\}^k \psi(\lambda_n) a_n,$$

which is equal to

$$\int_{a}^{w} \left\{ 1 - \frac{\phi(t)}{\phi(w)} \right\}^{k} \psi(t) dA(t), \tag{3.2}$$

tends to a finite limit as $w \to \infty$. After p+1 integrations by parts, (3.2) reduces to a constant multiple of

$$\int_{a}^{w} A_{p}(t) \left(\frac{\partial}{\partial t}\right)^{p+1} \left(\left\{1 - \frac{\phi(t)}{\phi(w)}\right\}^{k} \psi(t)\right) dt$$

which, by Lemma 2 and Leibnitz's theorem on the differentiation of a product, can be expressed as a sum of constant multiples of integrals of the types

$$\begin{split} I_1 &= \{\phi(w)\}^{-k} \int_a^w A_p(t) \psi^{(p+1)}(t) \; \{\phi(w) - \phi(t)\}^k \; dt, \\ I_2 &= \{\phi(w)\}^{-k} \int_a^w A_p(t) \psi^{(p+1-r)}(t) \; \{\phi(w) - \phi(t)\}^{k-\sigma} \prod_{v=1}^r \; \{\phi^{(v)}(t)\}^{\alpha_v} \; dt \end{split}$$

and

$$I_3 = \{\phi(w)\}^{-k} \int_a^w A_p(t) \psi(t) \{\phi(w) - \phi(t)\}^{k-\rho} \prod_{v=1}^{p+1} \{\phi^{(v)}(t)\}^{\rho_v} dt,$$

where $\alpha_1, \alpha_2, \ldots, \alpha_r, \beta_1, \beta_2, \ldots, \beta_{p+1}$ are non-negative integers such that

$$1 \leq \sum_{\nu=1}^{r} \alpha_{\nu} = \sigma \leq \sum_{\nu=1}^{r} \nu \alpha_{\nu} = r \leq p,$$

$$1 \leq \sum_{\nu=1}^{p+1} \beta_{\nu} = \rho \leq \sum_{\nu=1}^{p+1} \nu \beta_{\nu} = p+1.$$

Consider first I_1 . Integrate it by parts to obtain

$$I_1 = -I_{11} + kI_{12},$$

where

$$I_{11} = \{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+2)}(t) \{\phi(w) - \phi(t)\}^{k} dt$$

and

$$I_{12} = \{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1)}(t) \phi'(t) \{\phi(w) - \phi(t)\}^{k-1} dt.$$

Now, by a standard result [4, 29] and (3.1),

$$A_{p+1}(w) = o(w^{p+1}). (3.3)$$

Hence, using (3.3) and T_A (iii), we obtain

$$\int_a^\infty |\psi^{(p+2)}(t)A_{p+1}(t)| dt < \infty,$$

and so, by Lebesgue's theorem on dominated convergence, I_{11} tends to

$$l = \int_{a}^{\infty} \psi^{(p+2)}(t) A_{p+1}(t) dt \quad \text{as} \quad w \to \infty,$$

1 being finite.

For I_{12} , consider the function

$$f_1(w,t) = \{\phi(w)\}^{-k} t^{p+1} \psi^{(p+1)}(t) \phi'(t) \{\phi(w) - \phi(t)\}^{k-1}.$$

Using T_A (ii), we note that, for $w > t \ge a$,

$$|f_1(w,t)| < M_1 \{\phi(w)\}^{-k} \phi'(t) \{\phi(w) - \phi(t)\}^{k-1},$$

where M_1 is a constant. Hence $f_1(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$\int_{a}^{w} f_{1}(w, t) t^{-p-1} A_{p+1}(t) dt \to 0 \quad \text{as} \quad w \to \infty.$$

That is $\lim_{w\to\infty} I_{12} = 0$ and so

$$\lim_{l \to \infty} I_1 = l. \tag{3.4}$$

Considering now I_2 , we see, on integrating by parts, that it is equal to the sum of constant multiples of integrals of the types

$$\begin{split} I_{21} = & \{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+2-r)}(t) \{\phi(w) - \phi(t)\}^{k-\sigma} \prod_{v=1}^{r} \{\phi^{(v)}(t)\}^{\alpha_{v}} dt, \\ I_{22} = & \{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1-r)}(t) \{\phi(w) - \phi(t)\}^{k-\sigma-1} \phi'(t) \prod_{v=1}^{r} \{\phi^{(v)}(t)\}^{\alpha_{v}} dt \end{split}$$

and

$$I_{23} = \{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1-r)}(t) \{\phi(w) - \phi(t)\}^{k-\sigma} \prod_{v=1}^{r+1} \{\phi^{(v)}(t)\}^{\delta_{v}} dt$$

where $\alpha_1, \alpha_1, \ldots, \alpha_r, \delta_1, \delta_1, \ldots, \delta_{r+1}$ are non-negative integers, such that

$$1 \leq \sum_{\nu=1}^{r} \alpha_{\nu} = \sigma \leq \sum_{\nu=1}^{r} \nu \alpha_{\nu} = r \leq p;$$
$$\sum_{\nu=1}^{r+1} \delta_{\nu} = \sigma; \quad \sum_{\nu=1}^{r+1} \nu \delta_{\nu} = r+1.$$

For I_{21} , consider

$$f_2(w,t) = \{\phi(w)\}^{-k} t^{p+1} \psi^{(p+2-r)}(t) \{\phi(w) - \phi(t)\}^{k-\sigma} \prod_{v=1}^r \{\phi^{(v)}(t)\}^{\alpha_v}.$$

Suppose that the non-vanishing α_v of highest suffix is α_s . Then

$$f_2(w,t) = \{\phi(w)\}^{-k} t^{p+1} \psi^{(p+2-r)}(t) \phi^{(s)}(t) \{\phi(w) - \phi(t)\}^{k-\sigma} \prod_{v=1}^{s-1} \{\phi^{(v)}(t)\} v \{\phi^{(s)}(t)\}^{\alpha_s - 1}$$
 and

$$1 \leq \sum_{\nu=1}^{s} \alpha_{\nu} = \sigma \leq \sum_{\nu=1}^{s} \nu \alpha_{\nu} = r.$$

Using (2.2) and T_A (ii), we find that, for $w > t \ge a$,

$$\begin{split} |f_2(w,t)| < & M_2\{\phi(w)\}^{-k}t^{p+1} \left\{\gamma(t)\right\}^{r-1}t^{-p-1} \mid \phi^{(s)}(t) \mid \{\phi(w)-\phi(t)\}^{k-\sigma} \left\{\phi(t)\right\}^{\sigma-1} \left\{\gamma(t)\right\}^{s-r} \\ < & M_2 \left\{\phi(w)\right\}^{-1} \left\{\gamma(t)\right\}^{s-1} \mid \phi^{(s)}(t) \mid, \end{split}$$

where M_2 is a constant. Because of (2.1), $f_2(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$\int_{a}^{w} f_{2}(w, t) t^{-p-1} A_{p+1}(t) dt \to 0 \text{ as } w \to \infty.$$

That is, $\lim_{w\to\infty}I_{21}=0$. Similarly $\lim_{w\to\infty}I_{23}=0$, and $\lim_{w\to\infty}I_{22}=0$ in the case $k-\sigma-1>0$. The

remaining case of I_{22} is that in which $r = \sigma = p$, and we write the integral as

$$\{\phi(w)\}^{-k}\int_a^w A_{p+1}(t)\psi'(t)\,\{\phi'(t)\}^{p+1}\,\{\phi(w)-\phi(t)\}^{k-p-1}\,dt.$$

Consider

$$f_3(w,t) = \{\phi(w)\}^{-k} t^{p+1} \psi'(t) \phi'(t) \{\phi(w) - \phi(t)\}^{k-p-1} \{\phi'(t)\}^p.$$

Using (2.2) and T_A (ii), we find that, for $w > t \ge a$,

$$\begin{split} |f_3(w,t)| < &M_3\{\phi(w)\}^{-k}t^{p+1}\{\gamma(t)\}^pt^{-p-1}\phi'(t) \ \{\phi(w)-\phi(t)\}^{k-p-1}\{\phi(t)\}^p \ \{\gamma(t)\}^{-p} \\ < &M_3\{\phi(w)\}^{p-k}\phi'(t) \ \{\phi(w)-\phi(t)\}^{k-p-1}, \end{split}$$

where M_3 is a constant. Hence $f_3(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$\int_{a}^{w} f_3(w, t) t^{-p-1} A_{p+1}(t) dt \to 0 \quad \text{as} \quad w \to \infty.$$

That is, $\lim_{w\to\infty} I_{22} = 0$ in the case $r = \sigma = p$. Hence

$$\lim_{w \to \infty} I_2 = 0. \tag{3.5}$$

Finally, consider I_3 , which can be written in the form

$$I_3 = \{\phi(w)\}^{-k} \int_a^w A_p(t)(w-t)^{k-p-1} \{\phi(w) - \phi(t)\}^{p+1-\rho} g(t) H(t) h_{p+1-\rho}(t) dt,$$

where

$$g(t) = \left(\frac{1}{\phi'(t)} \cdot \frac{\phi(w) - \phi(t)}{w - t}\right)^{k - p - 1} \quad \text{for } a \le t < w, \quad g(w) = 1$$

and

$$H(t) = \prod_{v=1}^{p+1} \left(\frac{\{\gamma(t)\}^{v-1} \phi^{(v)}(t)}{\phi'(t)} \right)^{\beta_v},$$

where $\beta_1, \beta_2, \dots, \beta_{p+1}$ are non-negative integers such that

$$1 \le \sum_{\nu=1}^{p+1} \beta_{\nu} = \rho \le \sum_{\nu=1}^{p+1} \nu \beta_{\nu} = p+1.$$

Then H(t) is of bounded variation in $[a, \infty)$, because of $T_A(v)$, and so can be expressed as the difference between two bounded monotonic non-increasing functions. Consequently, we can assume, without loss of generality, that H(t) is bounded and monotonic non-increasing. Also, $\{\phi(w)-\phi(t)\}^{p+1-\rho}$, g(t) and $h_{p+1-\rho}(t)$ are monotonic functions of t in the range $a \le t \le w$, the first being non-increasing since $p+1-\rho \ge 0$ and the second non-decreasing by Lemma 5. Using the second mean-value theorem for integrals twice, we now see that

$$I_3 = \{\phi(w)\}^{-k} \{\phi(w)\}^{p+1-\rho} H(a)g(w)h_{p+1-\rho}(x) \int_{\xi_*}^{\xi_2} A_p(t)(w-t)^{k-p-1} dt,$$

where $w \ge \xi_1 > \xi_2 \ge a$, and x = w or a according as $h_{p+1-\rho}(t)$ is non-decreasing or non-increasing. Hence, by Lemma 3 and (3.1),

$$I_3 = o(\{\phi(w)\}^{p+1-\rho-k} w^k h_{p+1-\rho}(x)) = o(G(w, x)), \text{ say.}$$

Now, by (2.2), and T_A (ii),

$$G(w, w) = O(\{\phi(w)\}^{p+1-\rho-k}\psi(w)\{\gamma(w)\}^{\rho-p-1}\{\phi'(w)\}^{k+\rho-p-1}w^k\} = O(1),$$

and, by T₄ (viii).

$$G(w, a) = O(\{\phi(w)\}^{p+1-\rho-k}w^k)$$

$$= O(\{\phi(w)\}^{1-\rho}) = O(1),$$
ence
$$\lim_{w \to \infty} I_3 = 0.$$
(3.6)

since $\rho \ge 1$. Hence

Because of (3.4), (3.5) and (3.6) we can deduce that (3.2) tends to a finite limit as w tends to infinity. This completes the proof of T_4 .

4. Proof of T_B . Suppose that $T_A(i)$, $T_A(ii)(a)$ and $T_B(vii)'$ hold. It is clearly sufficient to show that $T_A(viii)$ is a consequence.

It follows from T_B (vii)' that, for $w \ge a$,

$$\frac{\psi(w)\{\phi'(w)\}^{k-p}}{\{\gamma(w)\}^p}>c,$$

where c is a positive constant; and hence, by T_A (ii) (a),

$$\{\gamma(w)\}^p = O(\psi(w)\{\phi'(w)\}^{k-p}) = O\left(\left\{\frac{\gamma(w)}{w}\right\}^k \{\phi'(w)\}^{k-p}\right).$$

Consequently, by T_A (i),

D. BORWEIN and B. L. R. SHAWYER

$$w^k = O(\{\gamma(w)\phi'(w)\}^{k-p}) = O(\{w\phi'(w)\}^{k-p})$$

and so

$$w^p = O(\{\phi'(w)\}^{k-p}).$$

Hence, for $w \ge a$, $\phi'(w) > bw^{p/(k-p)}$, where b is a positive constant, and T_A (viii) follows by integration.

REFERENCES

- 1. D. Borwein, A theorem on Riesz summability, J. London Math. Soc. (2) 31 (1956), 319-324.
- 2. U. C. Guha, Convergence factors for Riesz summability, J. London Math. Soc., (2) 31 (1956),
 - 3. G. H. Hardy, Divergent series (Oxford, 1949).
- 4. G. H. Hardy and M. Riesz, The general theory of Dirichlet series (Cambridge Tract No. 18, 1915).
 - 5. C.-J. de la Vallée Poussin, Cours d'analyse infinitésimale (Louvain: Paris, 1921-22, 4th edn).

ST SALVATOR'S COLLEGE

ST ANDREWS