Reprinted from PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
Vol. 18 (Series II), Part 2, December 1972

CONVERGENCE CRITERIA FOR BOUNDED
SEQUENCES

by D. BORWEIN
(Received 26th July 1971)

1. Introduction
Let {K,} be a sequence of complex numbers, let

n
K,z

K(z) =
n=0

n~1s

and let
ko = Ko ky = K,—K,y (n=1,2,...).

Let D be the open unit disc {z: | z | <1}, let D be its closure and let 6D = D—D.
The primary object of this paper is to prove the two theorems stated below,
the first of which generalises a result of Copson (1).

Theorem 1. If

Zo | K, | <o0, (1)
K(z) #0 on 8D, (2)

and if
{a,} is a bounded sequence 3)

such that, for some positive integer N,

ZO ka,.,=0 (n=N,N+1,..), 4)

then {a,} is convergent.

In essence, Copson’s theorem is the above result with conditions (1) and 2)
replaced by the single condition

~1 =K<k <..<Ey y<Ky=Kyy. =0 (r=1,2..). )
If (C) holds, then (1) is trivially satisfied, and K(z) is a polynomial satisfying (2),
since K(1)<0 and, for z = e, 0< <27,

N

Re(1-2)K(z) = — ¥ k,(1—cos rf)<O0.
1

The next theorem shows that condition (2) is necessary for the validity of
Theorem 1 when K(z) is subject to certain additional conditions: in particular,
it shows that (2) is necessary when K{(z) is analytic on D and K1) #0.
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Theorem 2. If K(z) = p(z)q(z) where p(z) is a polynomial and

0

g(z)= 3 q,z",

and if il
I la]<e, ®)
q(z) # 0 on D, (6)
KQ=00#1]|(]=1, (7

then there is a bounded divergent sequence {a,} and a positive integer N such
that

ZO ka, ,=0 (n=N,N+1,..). (8)

2. Proof of Theorem 1
By (1), K(z) is analytic on D and continuous on D. Hence, by (2), K(z)
can have at most a finite number of zeros in D; and consequently
K(z) = p(2)q(2) €)
where p(z) is a polynomial with no zeros in the complement of D, and ¢(z)
is analytic on D and continuous and non-zero on D.

Let
a@)= Y az,
and let e
u(z) = q(z)a(2), (10)
u(z) = p(z)u(z). 11

Since, by (3), a(z) is analytic on D, so also are u(z) and v(z2).
Let {g,}, {,}, {v,} be the sequences such that

o0 o0
Gz ulz) = Z uz", v(z)= Z v,z"
n=0 n=20

18

q(z) =

for all z in D,
Since v(z) = K{(z)a(z), we have that

0

n
U= Z Kran—r
0

r=

and hence, by (1) and (3), that {v,} is bounded. Further, by (4), we have that

=01 = Y K, 20 (n=N, N+1,..). (12)

It follows that
: v, >0 (13)
where v is finite.
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We prove next that {g,} satisfies (5), and that

ty > 4
where u is finite,

Case (). p(z) =cz™ (m=0,1,..).

It is evident that (5) and (14) hold in this case.
Case (ii). p(z) = a—z, 0<|a|<]1.

By (9), K(2) = 0 and g(z) = (x—2)"'K(z). Hence

g, = i o 'K, = — i o "K,,
r=0 r=n+1
and so, by (1), we have that
o0 0 r—1 b 1 0
lal= ¥ |K| Y [« s 2 | K |<oo.
n=20 r=1 n=10 1"’0!]!':1

N Also, by (11), v(2) = 0 and u(z) = (¢—z)"'v(z). Hence, by (13), we have
that

o a0
_— v
,=— 3 " o,== Y o', 4, >~ —— as n—o0.
r=n+1 r=90 -0

Thus, (5) and (14) hold in Case (ii).
Application of Case (i) followed by repeated applications of Case (ii)
establishes (5) and (14) in the remaining case:

p(2) = 2™y =2)(0—2)...(0;—2), O0<|a;|<1, O<|a,|<], ..., 0<]oa;|<1.
Finally, since g(z) has no zeros on D and (5) holds, we have, by the Wiener-

Lévy Theorem ((2), p. 246), that there is a sequence {c,} such that
1 o0

— = ) ¢z2" (zeD) (15)
q(z) <o

and

i | €n | < c0. (16)

n=20

By (10), a(z) = u(z)/q(z), and hence, by (14) and (15), we have that

a, =

IIM:

o0
Cliy_p U Y €, a5 n—00,
r=49

r=90

3. Proof of Theorem 2

Define a sequence {a,} and a function a(z) by

i i a4.2" (z € D); (17)

;.
q(z)({—2)
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and let
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w(z) = (1-2)K(2a(z) = Z
and, by (6) and (7), {—z is a factor of the polynomial p(z). Consequently w(z)
is a polynomial, of degree N—1 say, and (8) follows.

Further, by the Wiener-Lévy Theorem, hypotheses (5) and (6) imply
conditions (15) and (16). Hence, by (17), we have that

———

v

- 1
g, =" Y ofT"—> —— as n—oo.
,Zo qa(©)

Since ¢({) # 0, it follows that {a,} is bounded but not convergent.

4. Remarks

1. The proof of Theorem 1 shows that conditions (1) and (2) imply that
K(z) must satisfy all the hypotheses of Theorem 2 preceding hypothesis (7).

2. The following theorem is a corollary of Theorems 1 and 2.

Theorem 3. If K(z) is analytic on D and K(1) # O, then condition (2) is
necessary and sufficient for every bounded sequence {a,} satisfying (4), for some
positive integer N, to be convergent.

A direct proof of Theorem 3 that avoids the Wiener-Lévy theorem and
other complications can readily be constructed from parts of the proofs of
Theorems 1 and 2.

3. Theorem 1 remains valid when condition (4) is replaced by

ka,.,eQ (n=N,N+1,..) (18)
0

=

g
where Q is any closed quadrant of the plane.

To establish this we need only modify the proof of Theorem 1 to the extent
of changing “ = 0 in (12) to “e Q. Condition (18) is slightly more general
than (4) and somewhat more appropriate in the context of complex sequences.




