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In this note, we consider the generalized strong Abel-type summability methods
[A,], and [A}],, and establish some equivalence and inclusion relations. We also con-
sider the product of Abel-type methods with regular Hausdorff methods.

1. Introduetion

We write throughout:
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We also use M for a constant, not necessarily having the same value at each occurrence.
The Abel-type methods A, and A}, introduced in [2] and [3], are defined as follows:

If

(1 — )t 3 &S, 2"
n=0

is convergent for all z in the open interval (0, 1) and tends to a finite limit [ as z—> 1 in
the open interval (0, 1), we say that the sequence {S,} is A,-convergent to [ and write
S,—=>1(A4,).

It is evident that S, 1(4,) if and only if the series defining §,(y) is convergent
for all ¥ > 0 and §,(y) 1 as y—oo. For 1 = 0, we have the ordinary Abel summability A.
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1f the series defining u,(y) is convergent for all ¥ > 0 and U,(y) tends to a finite
limit [ as y — oo, we say that the sequence {S,} is A;-convergent to [ and write S, = 1(4}).

It is known that the methods A, and A;,, are regular for all 2 > —1 ([2], Theo-
rem 1; [6], Theorem 34).

We now recall the definition of a regular Hausdorff method H, and define the
product method A,H .

Let x(t) be a real-valued function of bounded variation in [0, 1] such that
#04) =x(0) =0, - and (1) =4,

and let
1

(L4} h, = é‘] (f) . j 1 — o)

Q

If h,—> ! as n— oo, we say that the sequence {S,} is H -convergent to [ and write
8, IH). :

If h,—i(A;), we say that the sequence {S,} is A,H -convergent to [ and write
S, 1(A,H). '

2. Delinitions of strong summabhility

Let p be a positive number. The strong Abel-type summability methods [4,],
and [A}], are defined as follows ([5] and [8]):

Strong Abel-type Summability [A,],. If

2. 1) jwﬂm%—mm:o@

as y - oo, we say that the sequence {§,} is strongly A,-convergent with index p or
[A4;],-convergent to [ and write S, I[4,],. :

Strong Abel-type Summability [A}],. If
v

(2. 2) J 1 Usia(t) —1Pdt = o(y)
o

as y - oo, we say that the sequence {§,} is strongly Aj-convergent with index p or
[4;],-convergent to I and write S, - I[A],-
Strong Product Summability [A,H ],

If h,—1[A,],, we say that the sequence {S,} is [4,H],-convergent to [ and Wfite
8, > I[A,H ],

3. Main results

We prove the following theorems:
Theorem 1. If 0 < g < p, and S, I[A}],, then S, I[A],-
Theorem 2. If 2 >0, p > 1, and S,—1[4}],, then S, 1(4}).

Theorem 3. If 1 > 0, and S, 1(A}), then S, U[A; ], for every p > 0.
The next theorem gives necessary and sufficient conditions for the [A}] -con-
vergence of the sequence {S,}.
19*
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Theorem 4. For 2 > 0, p > 1, necessary and sufficient conditions for the [A;],-con-
vergence of the sequence {S,} to | are:

(3.1) S,—=>1(A})
and

Y
d »
3.2) [lrg ool d=ow e ysoo
0

The following two theorems give relationships between the [A4,], and [4;], methods.

Theorem 5. If A>0, p >1, then §,—-1[A,], if and only if S,->1[A;], and
nu,—0[A, ,1,-

Theorem 6. If A >0, p > 1, then §,~1[A;], if and only if S,—I[A;_4],.

Finally, we have the following theorem about the product method [A4,H,],.

Theorem 7. If 2 > —1, p > 1, H, is a regular Hausdorff method, and S, 1[A4,],,
then S,~l[A,H,],.

The corresponding results for ordinary summability are established in [2] and [3],
for absolute summability in [4] and for strong summability (i. e. the case p = 1) in [5].

4, Preliminary resulfs
We require the following results.

00 "
Lemmal. IfA>u>—1,y>0and 3 &8, (Ttti"——?) s convergent for all t > 0,
n=0

then
e BT

G S0 =TT Y Of(y 1S, (1) .

This lemma is proved in [2] (Lemma 2 (i)).

Lemma 2. If A >—1,y >0, and E‘ s, (%}n is coneergent for all t > 0,
then gt gl

(4.2) W) = W+ 978,00 — 2L + 977 [+ 0TS0

(4.3) Uye) = AL+ )7 [ (L + 058,00,

0

(4. 4) Suly) = U, (y) + (1 + y)u,(y).

(4. 5) 8,w) = U, 1(y) + uy(y),

(4. 6) yuy) = U1 (y) — U,y

d 1

(4.7) y@ Uialy) = m[Uz+2(y) — Ui,

(4. 8) ydiysﬁ(y) = (4 DIS,010) — S,0)] = 5@),

(4.9) Uy) = Ay~ [ 00, (0 de.
0

Some of these relations are established in [3]. For complete proofs, see [9].
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Lemma 3. If 1 >—1, Z eS8, 2" is convergent for 0 =z <1 and h, is defined
y (1. 1), then

610) B = A+ F adn (L ) fs (1) dy (1)

This lemma is proved in [2] (Lemma 5). See also [1], p. 376.

Lemma 4. For A > —1, p > 1, necessary and sufficient conditions for the [A,],-
convergence of the sequence {S,} to | are that

(i) S, 1(4)),
and

v
(ii) f ;tdiiSi(t)lw di=oly)  as y—oo.
0
This lemma is proved by Mishra in [8] (Theorem 4).

b. Proofs of the main results

Theorem 1. We have, by assumption, that (2. 2) holds. Using Holder’s inequality with

P and i 7 we obtain

indices
a

LA Oflem(t)—wdtHfdtT_

0 Al

g
P

— PO ) =0ly) a8 y> oo

Theorem 2. In view of Theorem 1, we may assume that §,—[[4;];. Now, by
(4. 9), we get that

V) — 1] < Ay*ufyzﬂ* Uy, (t) — 1] de

= Ay~ [;ﬂ-l ot ) o (t) dt} =o(1) as y — oo.

Theorem 3. The result is a consequence of the regularity of the (C, 1)-method.
Theorem 4. Necessity: We need only establish (3. 2). By (4. 7), we have that

Y Y Y
”c% U, (t) r it < M[flUHl(t)—ll”dt—{—f]Ui(t)Hllf'dt]
0 0 ]

= o(y) as y = ok,
in view of Theorem 3.

Sufficiency: Again, by (4. 7), it follows that

fy]Um(z)—mdtg M[ft—gtuUA(t)

by Theorem 3 and (3. 2).

Y
pdt—l—f]Ul(t)—l|pdtj|= o(y) as Yy - oo,
0
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; v
Theorem 5. (1) Suppose that S,—1[4,],,1.e.,, [[|8,,,()—![Pdt=0(y) as y->occ.
0

In view of (4. 3) we have that

¥

¥ 4
J 1 Vs —1Pde M\ [ (4077 | [ (44 288,000 —Dds| + [ (4 + 0760
0

Y
M [T, )+ MfJ (t)dt.

0

Yy
NowJJz(t) = o(y) as y—> oo, since —p(A +1) +-1 < 0.

Further, using Hélder’s inequality with indices p and —P it follows that

gl
¢ Ap. p—1
J()§(1+z“’w+1)f|s 8) —UPdz| [ (1 + 27 dz
0

: ¢
< M+ )7+ (L 4 0y P49 [ |8,,1(2) —1Pdz = o(1) as £ oo,
0

Hence,
1 ¥
gf.fl(t)dt =o0(l) as y—> oo,
0

¥
Consequentlyof | Upy1(t)—1|Pdt =0(y) as y > oo. Thus §,—1[A4;],. Taking note of Lemma
4 and (4. 8) we get that nu,—>0[4,_,],.

(ii) Suppose that S,~>1[4;], and nu,~0[A4,_,],. We show first that S, > I[4,_ £lits
Now, by (4. 4) and (4. b), we get that

1
S,@)— 1= (1 -+ T) (U at) — ,z)__% (U,(t) — D).
Thus, for y > 1, we have that
¥ Ty Yy
1fES,l(t)—l\"’dt = ML}“ [Uppr () —1%dt + [ | U, () ;1|ﬂd;] = o(y) as y — oo.
1

It follows that S, 1[4, ,],. To complete the proof, we note that by (4. 8),

¥ .
J'S’“’l( —.lJi"olt<]er{f[v,1 ]T’dz—l-f\S —lfpdtJ:o(y) as y - oo,
ioe. Sy==14,);. .
Theorem 6. We have already proved that §,— 1[4, ], whenever S,—I[A4]],.

Now, suppose that §,—I[4, ], i e. f]S )—I|Pdt =0(y) as y—>oo. In view of
(4. 2) and (4. 5) we have that

Vi) — 1= 85,0) =1 — (1 + )7 [S,(0) — 1]

i
+ A+ 7 (1 + S, () — Hds — 1A + 1)+,
so that O

| Uara)—L12 < M{1S,()— 117+ A1 472D [ (4 4 21(S, (9) — 0| + (1 4 £)74+)]

= I,(t) + 1,(2) + L,(2).
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y -
By assumptionffl(t)dt —=o(y) as y—>oo; and since —p(A+ 1)+ 1 <0, we also

have thatf I,()dt = o(y) as y — co. Thus we are left with 7,(z). By Hélder’s inequality,
it follows that
L,(0) < M(L 4 1)+ f |5,(2) — UPdzl(1 4 1)1 4 1]

i
M 407 (4 oy (8, (z) — [Pdz =0 (1) as t > oo,
1 :
and so T f I,(t)dt = o(1) as y — co. This completes the proof of the theorem.

Theorem 7. Suppose that S,—1[A4,],. It follows from the regularity of H, and
(4. 10) that A, ,(z) — I = fl(SHl(zt)—_l)dx(t). Using Holder's inequality for Stieltjes
integrals ([7], Theorem 21(6), we get
hagala) — 17 < M F15,.4(60) — 1P |20

Hence
1 -
5f1h1+1(z)—mdzg Mff(yt) dz (1)),
Q 0
where

f(0) :%J |18,,1(2) —UPdz = 0(1)  ast—>oo.

The theorem follows now from a standard argument (cf. [6], proof of Theorem 217),
since y(¢) is continuous at 0.
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