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1. Introduction

Suppose throughout that {s,} is a sequence of real numbers, A is real, ¢5 =1, and

ﬁ=<n:/1>forn=1,2, 3, ....

We are concerned with the methods of summability 4;, introduced and studied by
Borwein [ 1], and defined as follows. If

— —A—1 s A y .
M a)=+») " E as, (———1 ; y)
converges for y>0, and tends to s as y — oo, then we say that the sequence {s,} is
A ;-convergent to s and write s, — s(4;). The method A, is the ordinary Abel method.

Borwein has proved (in [1]) the following basic resuits.

Lemma 1. For A> —1,if ¥ &ls, ( 4 5 ) converges for y >0, then for ¢ >0,

-0 1+
FA+e+1) 172 NV
@) Gl(y)z—IT(l:f)—F—(g)YY (j) (1 _—y—> (-y-) Oave(D)dt.

Lemma 2. 4, is regular for A> —1. [That is, 5, — s implies 5, — s(4,).]

Lemma 3. A,,, CA, for A>—1, ¢>0. [That is, 5, — 5(4,,,) implies 5, — s(4,) and
there exists a sequence {s,}, depending on 4 and e, such that {s,} is 4;-convergent but not
A, . ~convergent.]

The real-valued function f is said to be slowly decreasing if lim inf{ f(y)—f(x)} 20

whenever y = x —o0 and In EANN 0; i.e., if for each £>0, there exist positive numbers &
= x

and M such that f(y) — f(x) 2 —¢ whenever yZx=Mand 0<In —ﬁ— <é.
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The object of this paper is to prove the following two Tauberian theorems.

Theorem 1. For A> —1 and ¢>0, if s, — s(A}), and 6, ., ,(¢) is slowly decreasing, then
Sp— S(A}.+s)°

Theorem 2. For A> —1 and ¢>0, if 5,— s(4)), and 6, ,()=0(1) for t>0, then
S,— 8(A; ;) for0<d<e.

2. A general Tauberian result
Throughout this section we assume the following four initial hypotheses.

(i) K(u, v) is defined, real-valued, and nonnegative for u >0, v 2 0. Moreover { K(u, v)dv
0

exists in the Lebesgue sense for each u>0.

oo

(i) | K(u, v)dv— 1 asu—c0.
V]
(iii) f(v) is real-valued and continuous for v = 0.

(iv) F(u)= | K(u, v) f(v) dv exists in the Cauchy-Lebesgue sense for each u> 0.
0

Theorem 3. Suppose the following conditions hold:

(3) @ is a real-valued, nonnegative, increasing, continuous function defined on [0, o)
such that @ (x) — o0 as x — 0

(4) lim inf{f(y)—f(x)}QO whenever y 2 x — o and ®(y) — P (x) — 0;
) P(x)—P(x—1)—0asx—o0;

(6) | K(u, v)dv — 0 whenever u> x —o0 and &(u) — P(x) —0;
0
0 cjo K(u, v) {®(v) — @(x)}dv — 0 whenever x >u —o0 and $(x) — P(u) —0;

and
®) Fu)=0(1) for u>0.
Then f(v) =0(1) forv>0.
" This result is the integral analogue, with slightly weakened hypotheses, of a theorem

originally given by Vijayaraghavan [4]. A proof patterned on the one given by Hardy can
easily be constructed using the following four lemmas. We omit the details.

A M
Lemma 4. If | K(u, v)dv— 0 as u —oo for each M >0, then
0

liminf f(v) < liminf F(«) < limsup F(u) < limsup f(v) .
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Lemma 4 is the integral analogue of Theorem 9 in [2], and is proved by an argument
of standard type.

Lemma S. If (3) and (6) hold, and if f(v) — s as v —o0, then F(u) — s as u —oo, where s
may be finite or infinite.

Proof. By Lemma 4, it suffices to show that, for every fixed M >0,
M

| K(u,v)dv—0 asu—o0.
0 .
Let &, M be given positive numbers. By (6) there exist an X=M >0 and an R>0
X
such that | K(u, v) dv<¢ whenever u> X and &(u)— ®(X)2 R. Let U be the positive
0

M X

number such that @(U) = R+ &(X). Then for u2 U, | K(u, v) dv< | K(u, v) dv<e. This
0 0

completes the proof.

Lemma 6. If (3) and (4) hold, then there exist positive constants M, M, such that
JO)=f(x)> - M {@(y) — P(x)} — M,
fory=zx=0.

Proof. By (4) there exist positive numbers X and & such that f(y)—f(x)>—1
whenever y = x = X and @(y) — d(x) £ 6.

If X=y=x=0, then by the continuity of f, there exists a positive constant N, such
that f(y) — f(x)> — N;.

Ify=zX=x=0and &(y) — ¢(x) <9, then ¢(y) — P(X) S P(y) — P(x) < 6 and since @
is increasing to infinity, y must be bounded above, so that f(y)—f(x)> — N, for some
positive constant N, .

It follows that f(y)— f(x) >— M, whenever y=x2=0 and &(y)— P(x) <5, where
M2 =maX(1, Nl’ NZ)'

Suppose now that y> x = 0. Define an increasing sequence {x,} so that x,=x and
d(x,)=P(x,_,)+ for r=1,2, ... . Since P(x,)=P(x,)+rdé we have x, —co. Hence,
there exists an integer m such that x,, <y < x,,,,. Therefore

O SOV =S = T Uet) ~F I+ 1)~ [(x)> = mMy — M
r=0
Since mé = ®(x,,) — P(x,) < P(¥) — P(x) it follows from (9) that
M
fO) = f(3)> === {8() = 0}~ M, .

The desired result follows.
Lemma 7. If (3) and (7) hold, then

| K(u, v)dv—0

whenever x > u —o0 ‘and $(x) — P (¥) — 0.
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Proof. Assign £ > 0. By (7), there exist positive numbers X and R such that R>1 and
| K(u, v) {®(v) — P(x)}dv<e

whenever x> u> X and ¢(x)— &(u) = R.

Suppose now that x>u>X ‘and d(x)—P(u)=R+1. Since P is continuous and
increasing, there exists a w satisfying u < w < x and ¢(x) — ¢(w) =1. Now

B(W) — D(u) = D(W) — D(x) + P(X) = PW)= —1+R+1=R.

Hence,

Oj? K(u, v)dv= }0 K(u, v) {9(x) —d(W)}dv
K(u, v) {®(v) —d(W)}dv

K(u, v) {®(v) - d(w)}dv<e.

This completes the proof.

3. A Tauberian theorem of Wiener

In this section we state a version of a Tauberian theorem of Wiener (see [2],
Theorem 233).

Theorem 4. If
(10) ge L(0,0);

(11) | g(®t *=dt+0 for any real x;
o

(12) f is bounded and measurable over (0, 0);

(13) f is slowly decreasing;
(14) lim— g <i> fydi=s | g(t)ds;
yue Y g y 0

then f(f) — s as t —o0.

4. Proof of Theorem 1
Let

SO =0,..0),
rA+e+1)
1 TrA+1)I'(e)
0 otherwise.

-0t O<e<t
g)=
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Note that the function g satisfies conditions (10) and (11) and that
| g(ndt=1.
0
Further, the hypotheses of Theorem 1 together with identity (2) ensure that
12 t
0,(0)=—1]¢g (*) ndt
0)=-; g 5 ) O

and that f satisfies conditions (13) and (14). In view of Theorem 4, it therefore suffices to
prove that f is bounded on (0, c0).

Let ,

FA+e+1) 1 (o) PANRE
Sl AL NV SR PR B I
TO+) T u (u) u 0<v<u

K(u, v)= .
0 otherwise,
% 0<x=<e

d(x)=

() In x e<x<o,

0

Now, K(u,v) =0 and j' K@, v)dv=1 for u>0. Moreover, since f is continuous,
0

| K(u, v) f(v)dv exists for each u> 0.
0

It is clear that the function @ satisfies conditions (3) and (5), and the hypotheses of
Theorem 1 guarantee that (4) and (8) hold. Condition (7) is satisfied since K(u, v)=0
whenever v =« > 0. For (6), when u > x we have

x _ TA+e+1) 1% i}_‘ v £-1
(!K(”’”)d”_ TG+ T(e) u £<u> <1 u) dv

x/u
=_£(_'1_'f_8_ﬂ)__ j t‘(I——t)”‘ldt—>0asi—>O,
rG+10)TE) u

and hence as In Y 0. Asaresult of Theorem 3, the proof of Theorem 1 is complete.
x

5. Additional lemmas
In order to establish Theorem 2 we require two additional lemmas.

Lemma 8. If f € L(— o0, o0) then
] |f(rx).——f(x)|dx—-> Oasr—1.
The proof of Lemma 8 is straightforward and not unlike that of Theorem 248 in [3]

(for example). We omit the details.
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Lemma 9. If

(15) he L(0, 1), and

(16)  f(?) is measurable and bounded for t 2 0, then the function F, defined for y >0 by

12 t
et s

is slowly decreasing.

Proof. 1t suffices to show that, for y> x>0, F(y)— F(x) > 0as—— 1

For some fixed positive constant M we have

IFO)~ F(x)l = l-l— [#(5) roae— o (£) 0

j
() () ) oo

12 t

+7 £ h <—y—)f(t)dt

Mf ( )dt-l-ﬂ’fh(t>—h<—t—)dt+—]—‘—l—fh<i>dt
Xy 0 y X o y YV x y

=M(%—1>xfy |h(t)|dt+M§

x
(y ) h(®)

as 7 — 1 by Lemma 8 and (15). This establishes the result

dt+M j |h(D)|dt— 0

x/y

6. Proof of Theorem 2

FO+e+1)  avsrr ooss
— 1)¢ 1
M) r(1+5+1)r(g—5)’ -9 0<t<

otherwise.
Then h(f) € L(0, 1), and by identity (2) we have

1
0,+6(¥)= =5 (,E h (; ) Oa+e(D)dt .
0.

By hypothesis, ¢, . ,(?) is bounded for ¢ =

Hence, by Lemma 9, g, , ;(?) is slowly decreasing.
The result follows by Theorem 1.
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