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1. Introduction

Let &, denote the set of injective, partial self-maps on a set of n elements (this
notation comes from [2]). If further, this set is linearly ordered, let %, denote the
subset of order decreasing injective partial self-maps. In this paper we compute
the generating functions of r,=|%,| and b, =1|9%,|. It turns out that these
enumerative problems are closely related to Bell numbers, Sterling numbers of
the second kind and Laguerre polynomials; known to many as some of the
prettiest gems of combinatorial theory ([1] p. 67, 91, 116 and 232). It is initially
very surprising that there should be such a direct correspondence between
partitions and order decreasing injective partial maps.

The motivation for this problem originally came from [2], where it was made
clear that we are (here) dealing with the most familiar interesting case in the
recursive enumeration of generalized Bruhat cells on algebraic monoids. To be
more specific, let M = M, (#) and let &, be identified with the set of 0, 1 matrices
with at most one nonzero entry in each row and column. Then there is exactly
one element of %, in each two-sided B-orbit on M (where B is the upper
triangular group). 9%, corresponds to the set of orbits of upper triangular
matrices.

Notice that &, is an inverse semigroup under composition of partial functions,
usually referred to as the symmetric inverse semigroup on n letters. In fact, %,
plays the same role in inverse semigroup theory as does the symmetric group in
group theory. It appears that there are many other infinite families of algebraic
monoids which yield enumerative problems similar to the one solved here.
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2. Injective partial transformations

Let 7, = |®,|, the number of injective partial maps on the set of n elements. It
is fairly easy to see that r, = X/ (7)n!/i! and this leads to one proof of the
following proposition (see Remark 2.2). However, we first provide a direct
enumerative proof.

Proposition 2.1.
(a) =1, n=2
(b) r,=2nr,_;—(n— ), for m=2

Proof. (a) is obvious, so consider (b). Let %; denote the set of injective, partial
functions from a set of size i to a set of size j, and let r; = |%,|. Note that r; =r.
Let n =1, and distinguish an element x € n + 1, the set with n + 1 elements. We
claim that

fos1=r,+(n+Dr,+nr,_ .. €))]
Indeed,

t, = |{f € Bns1 | x ¢ Domain(f) U Range(f)}|

(n+ 1)1, = |{f € Rps1| x € Domain(f)}|, and

nry_1.0=|{f € R+ | x € Range(f)\Domain(f)}|.
Similarly,

AT R el AR 2)

since (choosing a distinguished element y e n) we have 7,_, = [{f € Rn_1. |y ¢
Range(f)}| and (2= 1)7, 5, 1= |{f € R, |y € Range(f)}|. So repeated ap-
plication of (2) yields

nEn! el
fﬂ"nq,n=‘_§mm-;= [2:01—1", (3
Putting (1) and (3) together yields
n—1 n|
ro=m+2r,+ > = (4)
i=0 b
But then
n—1 n!
Foog— (42, = E —r,
=0t
Z(n—1)!
=nr,_,+n E (i-f'-ir,-
i=0 i

=nr,_, +n(r, —(n+ Dr,_,).

The last equality follows from (4). Thus, 7., =2(n + D)r, —n’r,_;. O
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Remark 2.2. Alternately, we could let
1 o 1

= @ =

Then
= n X = x"
c.x"=e s
EO n=0(n'!)2
so that
—Xx . n : xﬂ
e e = .
rg() r?::(] (n!)z
Then since
s Carl-2 6
dx \ dx Eo(n!)z _Eo(n:)”
we obtain
. o N d( d 3 o0
e —, i X n 1
ngoc,,x dx xdxe Eocnx)

Expand this out, cancel the e™™ and equate coefficients to get the desired result.

We now compute the generating function of the r,’s by solving the appropriate
differential equation.

Theorem 2.3. Let r(x)= X, _o(r,/n!)x". Then r(x) converges for |x| <1 to the
function e”'*"®)[(1 — x). Furthermore, r(x) satisfies the differential equation

rifx)  2—x

r(x) (1-x)*

Proof. For convergence we use the ratio test. If a, =r,,,/(n + 1)r, then using
2.1(b), we get

n Apn— Qy_ 1
an_l ol an = ( n—2 n l) @ ,
n+1\ a,_ia, , nn+1a,_,

whence it follows by induction that a, is decreasing. But a,>0 for all n, so
a = lim,,_,., a, exists. By 2.1(b), we havea=2—1/aand soa = 1.

Again using 2.1(b), it follows that (2—x)(d/dx)(xr(x))=r'(x), and so
r'(x)/r(x) = (2—x)/(1 —x)*. Thus, r(x)=e"*"/(1 —x), since the initial condi-
tions here are r(0)=1and r'(0)=2. O

Remark. If ¢, denotes the nth Laguerre polynomial, then by the formula on page
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116 of [1], £3-o £,(1)/n! =", Thus, we obtain the curious formula

Iy T

nl (n—l)'_g(l)

3. Order decreasing, injective partial functions

For n=0, let
={f e R, | f(a) <a for all a e Domain(f)}
and let b, =|%,|. Alsolet B, ,={f € B, | IDomain(f)| =i} and b, ; = |B,.l-

Proposition 3.1.
@) boo=b,,=1forn=0.
(b) by=1and b, =2.
() b,=2b, 1+ XI5 (n—i—1)b,_y; for n=2
(d) by;i=(n—i+1)by g1+ bui; for n>i>0.

Proof. (a) and (b) are obvious. So consider (c). Let n denote the linearly ordered
set of n elements and let x € n be the smallest element. Then

b,=b,_+ bicit Yot
where ()
Vo1 =|{f € B, | f(y) =x for some y #x}|

and b,_; = |{f € B, | f(x) =x}| = |{f € B, | x ¢ Range(f)}|. Now by partitioning
the set in the definition of y,_; by domain size, we see that
n—2
V1= E (=i — 1) s (6)
i=0
So (c) follows from (5) and (6).
For (d), simply notice that b, ; = b,_1 ;-1 + b,_1,;+ (n — 1)b,_, ;. since
bo1i1=1Hf€B,; |f(x) =x},

bn_1:=|{f € B, | x ¢ Range(f)}, and
(n—=)by—1,i1=(f € B |x =f(y) forsome y #x}|. O

Proposition 3.2. Define a sequence of polynomials pj(x) recursively, as follows:
pix)=x, and
pi(x)=(x + Dp;1(x) + pja(x +1) for j=2.

Then b, —2b,_,= L= p;(1).
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Proof. Let n =2 be given. We shall prove that
i—1 n—i
by =2=2, pi(1) + 2 Pilk)byin-is )
j=1 k=1

for all 1<i<n — 1. By 3.1(c), (7) holds for i = 1. Suppose now that (7) holds for
some 1=i{=n—2. Then by 3.1(d) we obtain

P |
bp—2b, 1= 2, p{(1) +pi(n — 1)
=1
n—(i+1)
E Pik)((k + )b, i1y, n—ir1)—k + Byt tyner=n)

i—1

=pin—1)+ 2 pi(1) +p,(1) - p,(n —i)
n—(i+1)

+ ,Zl ((k + Dpy(k) + puk + 1))bp_ 1y m—cirty—s

(i+1)—1 n'—.(i+])

,Z:l pi(1)+ 21 PH—l(k)bn—(i+1),n—(i+1)—k
and so induction on i establishes (7) for all 1<i<n-—1. When i=n—1, we
obtain b, — 2b,_, = X1 pi(1) + p.—1(1) = X5 p,(1), as required. O

Proposition 3.3. Let ¢, (f) =e“ 'e"“* (e’ + x — 1) and expand ¢, as

qn(x)
mO—Z =

for appropriate functions q,. Then q,(x) =p,(x) for all n =1.

Proof. By direct computation, cf);(t) =(x + 1)¢.(t) + ¢,.1(¢). Hence,

qn+l(x) - TA= qn(x) qn(x+1) i 1

and so ¢,(x) = ¢.(0) =x =p,(x), and g,,.,(x) = (x + l)q,,(x) +qg.(x+1). O
Define b(x) = Xrn_; (b, /(n + 1)) x™*1.
Theorem 3.4. b(x)=e“ "' —1.

Proof. From the definition of p,(x) for n =2, we obtain that p,(0) = p,(0) +
Y75t pi(1) for each 1<i=<n—1. For i =1 we then obtain p,(0) = L7 p,(1) and
so by 3.2 we have _

b,=2b,_1+p,(0) forn=2, (8)
with by=1, b;=2.
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Let c¢(x) =Xy -0 (b,/n!)x". Then from 3.3 and (8), we get c¢'(x)—2c(x)=
e*(e* — 1)e® ~'. Solving this equation in the usual way we obtain c(x) = e 1,
From this, our result follows easily. O

Note. By repeatedly differentiating (1/e) X, _, "™ /m! — 1 we obtain the formula

1 ® n+1

b=-3 =

€ =1 m!

originally due to Kozniowski, in the context of Bell numbers (see 3.5 and 3.6).

Remark 3.5. Anyone familiar with partitions and Bell numbers may recognize
b(x) as the generating function Y _,(P,/n!)x" where p, is the number of
partitions of a set with n elements. Thus, perhaps unexpectedly, we get p,., = b,,.
We leave the reader with the following exercise: Find a canonical bijection
between %, and P(n + 1), the set of partitions of a set of n + 1 elements.

Remark 3.6. If we choose to evaluate b, by means of the formula b, = ¥7_b,, ,,
it is convenient to define w,;=05,,_; for 0<i=<n. Then 3.1(a), (d) yields the
recursive formulation

& n=0,0=1 for n=0, and

(rn+l,i= af,,,,-_1+ (£+ l)a’,,,,- fOI’ 1&1,5]1

and, of course, we have

n
bn — z a’,u-.
i=0

Notice that the a, ;s are the Sterling numbers of the second kind, which arise in
the study of partitions (see 3.5). The following table records the first six cases.

0 1 1

1 1 1 2

2 1 3 1 )

3 1 7 6 1 15

4 1 15 25 10 1 52

i) 1 31 90 65 15 1 203
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