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ON STRONG GENERALIZED HAUSDORFF
SUMMABILITY

D. BORWEIN (London, Ont.), F. P. CASS (London, Ont.) and J. E. SAYRE (Halifax)

Introduction

For a series E’ak, et s,= Zn'ak. Let Q={qg, .} (n,k=0,1,..)) be a matrix
0 k=0
and let

q’::QC%)::ngquSP

The series > a, is said to be summable Q to s if g, exists for n=0,1,... and
0

tends to s as n tends to infinity. In this case we write s,—s(Q). The symbol P is
reserved for matrices {p, .} with p, =0, and I denotes the identity matrix. We
now recall the definition of strong summability introduced by Borwein [1].

Strong summability. A series S’ak is said to be summable [P, Ql, (f=0)
[}

tosif > p,xloc—s|? exists for n=0, 1, ... and tends to zero as » tends to infinity.
k=0

In this case we write s,~s[P, Ql,.

For summability methods ¥ and W, the notation VEW means that any
series summable ¥ to s is also summable W to s. The notation ¥ =~W means that
both VSW and WEV.

Generalized Hausdorff matrices. Suppose throughout that A={4,} is a sequence
of real numbers with

Jo=0, inf,>0 and 3 1/, = oo
n= n=0

Let Q be a simply connected region that contains every positive 4,, and suppose,
for n=0,1, ..., that I', is a positively sensed Jordan contour lying in  and en-
closing every A,€Q with O=k=n. Suppose that f is holomorphic in  and that
f(Ao) is defined even when A4¢ Q. Define

B flz)dz
(1) Ay = ~Hrre 2ni rnf (—2)...(Ay—2)
0 for k=n

+6, for O=k=n
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where 9,=f(4y) if k=0 and A2, and §,=0 otherwise. Here and elsewhere
we observe the convention that products like A..;...4,=1 when k=n. Denote
the triangular matrix {4, ,} by (4;f). This is called a generalized Hausdorff matrix.
The set of all such matrices is denoted by 4%,.

For o any real number, the generalized Hausdorff matrix H, is defined to be
the matrix (4;f) with f(z2)=(z+1)~* For a= —1, the generalized Cesaro matrix
C, is defined to be the matrix (4;f) with

DI+
@ = =i

These reduce to the standard Holder and Cesaro matrices when 4,=n. (See [1].)

Preliminary results

For 0<t=1, let 4,,(¢) denote the value of A,, obtained from (1) with
f(@)=¢, and let 4, ,(0)=2,,,(0+). Let

Dy =(1+20)dy = 1;

D, = [l—l——l—] (1+—L] =(144,)d, for n=1.

Then, (see [3]),
Of Ani (D) di =%’; for O0=k=n.
If

2 f(2) = fl Fdy(f) with yxeBV

where BV is the space of functions of bounded variation on the closed interval
[0, 11, then

1
o= [ Ini(D) A ().
0
It follows that

1 n
Ci(sy) = ‘D: kg‘; disy
so that
(3) Sn”—cl(sn) = Cl(’ln an)'

If f satisfies (2), x()—x(0)=1 and x(0+)=yx(0), then X=(4;f) is regular, i.e.
s,~s(X) whenever s,—s. (See [2; Theorem 1].)

Lemma 2 of [2] shows that if g and h are holomorphic in @ and defined at 2,
X=(4;g) and Y=(4;h), then

@ XY =YX = (2; gh).
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Lemma 1 of [3] shows that if X=(1;f) with fsatisfying (2), ¥=(1;f) with f(z)=
1
= f ## |dy(t)], and B=1, then, for any sequence {w,},
0

) , X (wa)lP = MP— X (w,}")
where M=f Idy (D).

From (4) it can be seen that H,H;=H,,; for all real o, 8. Theorem 2 of [2]
shows that

©) C,~H, for a=-—1.
(See also [5] and [6].) Thus

0 C,C;~C,.5s for a=—1, d>—1, a+d=>—1

Some theorems on strong summability
The first theorem generalizes Theorem 5 in [1].
Turorem 1. Suppose Q is a matrix, P is a regular matrix in 5, and X=(4;f)
where f(z)= fl ?dy(t) with 3BV, y(D—x(©0)=1 and y(0+)=yx(0). Then, for
p=1, [P, 0),SIP, XQl,.

1
Proor. Let £={%,,}=(4;f) where f()= [ #|dx(1)|. Since x€BV and
0

%(0+)=yx(0), it follows that lim %, ,=O0 for k=0, 1, ... and sup Zn' |%,, ] < . (See
oo n=0 k=0
[2, Theorem 1].) Hence X(u,)—~0 whenever u,~0. (See [4, Theorem 4].)
Let {s,} be a sequence, o,=X(s,) and w,=s,—s. In view of the regularity
of X we have o,—s=X(w,)+e, where ¢,~0. From (4) and (5) it follows that

@® P(X(w))IF) = MP—'PX (1w, ") = MP~KP(Is,~51")

1
where M= f [dy(t)]. Next, by Minkowski’s inequality,
0

©) (P X(wo)+e )2 = (P(IX(w)IP)) /P +(P(le,1P)) 8.

Suppose now that P(ls,—s|?)~0. Then, by (8), P(JX(w,)If)->0 so that, by
9), P(lo,—slf)=0. Hence [P, I];S[P, X1;, from which it follows that [P, N
[P, X0l,. O

The next two theorems generalize corollaries to Theorem 7 in [1].
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THEOREM 2. If X€3#; and =1, then necessary and sufficient conditions for
a series S’ a, to be summable [Cy, X]p to s are that it be summable C,X to s and
that l,,a,,—tO[Cl, C1X]g.

Proor. It follows from Theorem 1 in [i] that S’a,, is summable [C,, X1, tb

0
s if and only if it is summable C; X to s and summable [C;, (I—C;)X]; to 0. Further,
by (3) and (4),

| (I"_Cvl) X(Sn) = X(Sn—_cl (Sn)) = ClX(/ln an)'
The result follows. [

In conformity with notation introduced earlier (see [1; p. 123]), the generalized
strong Cesaro method [C;, C,_;]; will be denoted by [C, «], and the generalized
strong Holder method [y, H,;]; by [H,«];. We require the following known
result (see [8]). '

LemMMA 1. Let
T+ (z+)(z+1)°

Then both g(z) and 1/g(z) can be expressed as Mellin transforms of the form
1

[ & dy(t) with y€BV, y(1)—x©)=1 and y(0+)=7(0).

0

THEOREM 3. If a=0 and =1, then necessary and sufficient conditions for a

J=>—1.

series >, a, to be summable [C, ], to s are that it be summable C, to s and that

1]
2y8,—~0[C, 0+ 1],

ProoF. It follows from Theorem 2 that S’a,, is summable [C,«], to s if
0

and only if it is summable C,C,_, tosand 4,a,~0[Cy, C,;C,_;];. Next, it follows
from Lemma 1 with 6=«—1 and Theorem 1 that A,a,~0[C,, C,C, 4], if and
only if 4,a,~0[C,, H,]s. Applying Lemma 1 and Theorem 1 again, we see that
Awa,—~0[Cy, C,C,_;); if and only if A,a,~0[C,, C,],. This together with (7) yields
the result. [

The above theorem suggests the following extension of the definition of [C, a],

to the case a=0: 3> a, is summable [C, 0], to s if the series is convergent with
0

sum s and Zn’ dk\lkkakll’ =o0(D,). When A,=n, this definition reduces to the one

k=0
given by Hyslop [7].
The next theorem is an analogue of the equivalence relation (6) for strong
sammability.

Taeorem 4. For «=0, =1, [C, o), ~[H, «],.
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Proor. The case a=0 follows from Theorem 2 and the definition of [C 0;-
Suppose therefore that a=0. By Theorem 3, Z'a =s[C, ] if and only if Z’a =

=5(C,) and J,a,~0[C,,C,],. Further, by Theorem 2, Z’a,,zs[H, alg if and
0

only if S’a,,zs(Hx) and A,a,~0[C,, H,];. The result now follows from (6),

0
Lemma 1 and Theorem 1. [J

Generalized Hausdorff matrices associated with L? functions
Let L? denote the function space L?(0, 1). In this section we deal with Haus-
1

dorff matrices (4;f) with f(z)= f o) dt where @€L? for some p>1. An
0

n
ordinary Hausdorff matrix {x, .} satisfies these conditions if and only if 3 |x, |P<

k=0
<M@n+ 12 for n=0, 1, ... where M is independent of n. (See [4, Theorem 215].)
The following lemma is needed for the proof of Theorem 5.

LeMMA 2. Let @€LP with p=1. Let X=(;f) and XP=(1;f®) where
1 1
f@=[ Fo@dt and f®@)= [ Flo@)Pdt. If p>p=1 and 1p=1/u—1/p,
0

0
then for any sequence {w,},

[X(wIF = MPE=D(C, (Iw,|F))E -2 X P ([w,P)
where M= [ |p(1)? dt.
0

Proor. Let f,(t)= Zn’ A1 ()W, where 0=t=1. Then, by Holder’s inequality,
k=0

O = kz T () W18,
(See [3, (8)].) Hence

1 n 1 n
10 [15OFd= Sl [ @ di =g 3 dimlt = Culw)
and

[ 0@ dr= 3l [ 1aOlo(Pd = XD ().
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It follows, by H¢lder’s inequality, that

Xl =| [ e(fu(Ddl] =

= ([ lo@Pd) ([ 1@ a0 [ lo@)P| £, de)™* =

= MM HE(Cy(Iw |y X P (lw, ). O
The following theorem generalizes Theorem 10 in [1].
THEOREM 5. Let u=p=1, l/p 14+1/u—1/p. Let X=(A;f) where f(z2)=
= f rFo(1)di with ¢€L? and f ¢(t)dt=1. Then, for any matrix Q, [C,, Q&
<[C,, X0,
The theorem remains valid when p=ec (with I/p=1-—1/8 if A>1 and p=-o
if f=1) provided [C,, XQ).. is interpreted to mean XQ.

Proor. We use the notation introduced in Lemma 2, and note that X is regular
and X (v,)~0 whenever v,~0. Suppose that s,~s[C;, Ql;, and let 6,=0(s,),
w,=a,—8, and v,=C,(jw,]?).

(i) Suppose u is finite. By hypothesis, v,—~0 and hence, by Lemma 2,

Ci(IX(wI*) = KC; XD (|w,}f) = KX P (v,) ~ 0

where K=M!1-V8) sup p/F-1, Also, by the regularity of X, we have X(o,)—s=
=X(w,)+¢, where g,~0. Thus, by Minkowski’s inequality,

(Co(1X (o) s = (CL(X O+ (Ca(lal ) ~ O,
ie. s,~s[Cy, XQl,.
(11) Suppose now that pu=eo, By Holder’s inequality,

IX(w,)If = | f LWe@adil =m f |1, (DIF dt

where m=MF-1 if B>1 and m=esssup |p()| if f=1. Since (10) holds under

0<t<1

the operative hypotheses, it follows that
| IX(w I = mCy(1wlf) = mm, 0,
and hence that s,~s(XQ). O

TurorReM 6. Let o=1/f~—1/u where p=f=1. Then, for any matrix Q,
[C1, QLEIC:, C, Q-
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Proor. When p=p, the result follows from Theorem 1. Suppose that p=>j and
1
let 1/p=1+1/p—1/p. Then C,=(i;f), where f(z)= f o(t)dt with ()=
0
=go(1~¢)*-1, Since ¢cL?, Theorem 5 now yields the result. O

THEOREM 7. Let y>a+1/8—~1/p where p=p=1 and o is any real number.
Then [H, a}sSIH, 7],.

Proor. Applying first Theorem 6 and then Theorem 1 together with Lemma 1,
we get

[H, “]/r = [H1s Ha—l]ﬂ g [Hb Cy-—ozHac-—le = [Hu H‘/—zsz—-IJM =
=[1:113 Hy—l]u::[H9Y]p' ]

REMARK. It is known that, in the special case A,=n, Theorem 6 also holds
when ¢=1/f—1/u and Theorem 7 when y=a+1/f—1/u. (See [1] and the ref-
erences there given.) Whether the same is true for more general 4, is an open question.
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