A Tauberian theorem concerning Dirichlet series

By DAVID BORWEIN

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

(Received 31 March 1988; revised 6 June 1988)

Abstract

It is shown that under certain general Tauberian conditions the asymptotic relationship

$$\sum_{n=1}^{\infty} a_n s_n e^{-\lambda_n x} \sim s \sum_{n=1}^{\infty} a_n e^{-\lambda_n x} \quad \text{as} \quad x \to 0 + \infty$$

between two Dirichlet series implies the asymptotic relationship

$$\sum_{k=1}^{n} a_k s_k \sim s \sum_{k=1}^{n} a_k.$$

1. Introduction

Suppose throughout that $\lambda := \{\lambda_n\}$ is a strictly increasing unbounded sequence of real numbers with $\lambda_1 \ge 0$, and that $a := \{a_n\}$ is a sequence of non-negative numbers with $a_1 > 0$. Let

$$A_n := \sum_{k=1}^n a_k$$
 and $a(x) := \sum_{n=1}^\infty a_n e^{-\lambda_n x}$.

Suppose also that $A_n \to \infty$, and that the Dirichlet series a(x) is convergent for all x > 0.

Let $\{s_n\}$ be a sequence of real numbers,

$$t_n := \frac{1}{A_n} \sum_{k=1}^n a_k s_k$$
 and $\sigma(x) := \frac{1}{a(x)} \sum_{n=1}^\infty a_n s_n e^{-\lambda_n x}$.

The weighted mean summability method M_a and the Dirichlet series method $D_{\lambda,a}$ (see [2]) are defined as follows:

$$\begin{split} s_n &\to s(M_a) \quad \text{if} \quad t_n \to s \,; \\ s_n &\to s(D_{\lambda,\,a}) \quad \text{if} \quad \sigma(x) \to s \quad \text{as} \quad x \to 0 +. \end{split}$$

When $\lambda_n := n$ the method $D_{\lambda,a}$ reduces to the power series method J_a (as defined in [1] for example). Since $A_n \to \infty$ both methods are regular (i.e. $s_n \to s$ implies $s_n \to s(M_a)$ and $s_n \to s(D_{\lambda,a})$, and also $s_n \to s(M_a)$ implies $s_n \to s(D_{\lambda,a})$ (see [2], theorem 1). The purpose of this paper is to prove the following Tauberian converse of the latter result:

Tauberian theorem for Dirichlet series

483

THEOREM. Suppose that

$$\lambda_{n+1} \sim \lambda_n,\tag{1}$$

$$A_m/A_n \to 1$$
 when $\lambda_m/\lambda_n \to 1$, $m > n \to \infty$, (2)

$$a_n \lambda_n s_n \geqslant -H(\lambda_{n+1} - \lambda_n) A_n, \tag{3}$$

where H is a positive constant, and that $s_n \to s(D_{\lambda,a})$. Then $s_n \to s(M_a)$.

A version of the theorem with (2) replaced by

$$a_n\,\lambda_n=o((\lambda_{n+1}\!-\!\lambda_n)\,A_n)$$

is known ([2], theorem 3). This latter result is a special case of the theorem since, as is easily shown, (2) is in fact a consequence of (1) and

$$a_n \lambda_n = O((\lambda_{n+1} - \lambda_n) A_n). \tag{4}$$

Thus the theorem also holds with (2) replaced by (4). The special case $\lambda_n := n$ of the theorem has been proved by Tietz ([4], theorem 1). His paper has references to previously proved special cases.

2. Preliminary results

LEMMA 1. Suppose that (1) and (2) hold. Then

- (i) a(x)/a(2x) = O(1) as $x \to 0+$, and
- (ii) $a(1/\lambda_n) = O(A_n)$.

Proof. The lemma follows directly from results proved elsewhere ([3], lemmas 5(i), 3 and 4).

Lemma 2. Suppose that (1), (2) and (3) hold, and that $\sigma(x) = O(1)$ as $x \to 0+$. Then $t_n = O(1)$.

Proof. Arguing as in the first half of the proof of [2], theorem 3 with c = 1/e but using lemma 1(i) (instead of $a(x)/a(2x) \rightarrow 1$ as $x \rightarrow 0+$), we deduce that

$$\frac{1}{a(1/\lambda_n)} \sum_{k=1}^{n} a_k s_k = O(1),$$

and hence, by Lemma 1 (ii), that $t_n = O(1)$.

LEMMA 3. Suppose that (1), (2) and (3) hold, and that $t_n = O(1)$. Then

$$\lim\inf \left(t_m - t_n\right) \geqslant 0 \quad \text{when} \quad \lambda_m/\lambda_n \to 1, m > n \to \infty. \tag{5}$$

Proof. Let $K = \sup_{n>0} |t_n|$. Since

$$t_n - t_{n-1} = (a_n/A_n)(s_n - t_{n-1})$$
 for $n > 1$,

we have, by (3),

$$t_{m} - t_{n} = \sum_{k=n+1}^{m} \frac{a_{k} s_{k}}{A_{k}} - \sum_{k=n+1}^{m} \frac{a_{k} t_{k-1}}{A_{k}} \geqslant -H \sum_{k=n+1}^{m} \frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{k}} - K \left(\frac{A_{m}}{A_{n}} - 1\right)$$

$$\geqslant -H \left(\frac{\lambda_{m+1}}{\lambda_{n+1}} - 1\right) - K \left(\frac{A_{m}}{A_{n}} - 1\right) \quad \text{for} \quad m > n > 0. \quad (6)$$

In view of (1) and (2), (5) follows from (6).

3. Proof of the theorem

Let

$$b_n := A_n(\lambda_{n+1} - \lambda_n) \quad \text{and} \quad \tau(x) := \frac{1}{b(x)} \sum_{n=1}^{\infty} b_n \, t_n \, e^{-\lambda_n x}.$$

Then as in the proof of [2], theorem 3 (end of p. 522 to middle of p. 523) it follows from (1), (2), (3) and Lemma 2 that $\tau(x) \to s$ as $x \to 0+$, i.e. that

$$t_n \to s(D_{\lambda,b}).$$
 (7)

Now let A(x) := 0 for $x < \lambda_1$,

$$A(x) := A_n$$
 for $\lambda_n \le x < \lambda_{n+1}$, $n = 1, 2, \dots$

and let $B(x) := \int_0^x A(v) dv$.

Then $B(\lambda_{n+1})=B_n=\sum_{k=1}^n b_k$ and $B_n\geqslant A_1(\lambda_{n+1}-\lambda_1)\to\infty$. Further, it follows from (1) and (2), by [3], lemma 5(i) that $A(y)/A(x)\to 1$ when $y/x\to 1, y>x\to\infty$, which implies (see [3], lemma 3) that

$$A(y)/A(\frac{1}{2}y) = O(1)$$
 as $y \to \infty$. (8)

Hence, for $y > x > \lambda_2$,

$$\begin{split} (B(y)-B(x))/B(y) &= \frac{1}{B(y)} \int_x^y A(v) \, dv \\ &\leq (yA(y)/B(y)) \, (1-x/y) \to 0 \quad \text{when} \quad y/x \to 1, \, y > x \to \infty, \end{split}$$

since, by (8),

$$2B(y) \geqslant 2 \int_{\frac{1}{2}y}^{y} A(v) \, dv \geqslant y A(\frac{1}{2}y) \geqslant KyA(y)$$

for some positive constant K. It follows that

$$B(y)/B(x) \to 1$$
 when $y/x \to 1$, $y > x \to \infty$,

and hence, in view of (1), that

$$B_m/B_n \to 1$$
 when $\lambda_m/\lambda_n \to 1$, $m > n \to \infty$. (9)

Next, for $y > x > \lambda_2$,

$$(B(y) - B(x))/B(x) = \frac{1}{B(x)} \int_{x}^{y} A(v) dv$$

$$\ge (xA(x)/B(x)) (y/x - 1) \ge y/x - 1,$$

which implies that

$$y/x \to 1$$
 when $B(y)/B(x) \to 1$, $y > x \to \infty$.

and hence that

$$\lambda_m/\lambda_n \to 1 \quad \text{when} \quad B_m/B_n \to 1, \quad m > n \to \infty.$$
 (10)

By Lemmas 2 and 3, it follows from (10) that

$$\liminf (t_m - t_n) \ge 0 \quad \text{when} \quad B_m / B_n \to 1, \quad m > n \to \infty.$$
 (11)

Finally, by a theorem proved elsewhere ([3], theorem 6), it follows from (1), (7), (9) and (11) that $t_n \to s$, i.e. $s_n \to s(M_a)$.

This research was supported in part by the NSERC of Canada.

REFERENCES

 D. Borwein. Tauberian conditions for the equivalence of weighted mean and power series methods of summability. Canad. Math. Bull. 24 (1981), 309-316.

[2] D. Borwein. Tauberian and other theorems concerning Dirichlet's series with non-negative coefficients. Math. Proc. Cambridge Philos. Soc. 102 (1987), 517-532.

[3] D. Borwein. Tauberian theorems concerning Laplace transforms and Dirichlet series. Arch. Math. (Basel), (to appear).

[4] H. Tietz. Tauberian theorems of $J_p \to M_p$ -type. Math. J. Okayama Univ. (to appear).