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It is proved that if the weighted means of a sequence satisfy certain order
conditions, then the sequence is summabie by every non-trivial circle method, by
the Cesaro method, C,, and by the Borel-type method (B, a, f). © 1992 Academic

Press, Inc.

1. INTRODUCTION

Suppose throughout that {s,} is a given sequence, and that {g,} is a
sequence of positive numbers. The sequence of weighted means {¢,} is
defined by

1 1 n
ei=— Y GiSi, where Q,:= Y q,.
k=0

nkE=0

The sequence {s,} is said to be summable to s by the weighted mean
method M, if z,— s In particular, the Cesiro method C; and the
logarithmic method / are the methods M, with g, :=1 and ¢, :=1/(k+ 1),
respectively. The sequence of C,-means of any sequence {x,} will be
denoted by {x}}.

Recall that the Borel-type method (B, «, ), the Valiron method V,
(2 >0), the Euler method E;, the Meyer-K&nig method S;, and the Taylor
method T (0 <d < 1) are defined by

o xmn+ﬂ71
s, > 8(B, « if we ™™ §,———— —§ a3 X— w0
n ( 2 56) Hg‘)\’ nr(d—'—ﬁ) ]

* This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

49
0021-9045/92 $3.00

Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



50 BORWEIN AND MARKOVICH

where aN + > 0;

1/12 . 2
s,—s(V,) if (i) ¥ exp(—m—!d)sk—»s as n— oo;
n

2nn iy 2
5, — 5(Ey) if ) (Z)é"(l—é)""sk—w as n-— oo;
k=0
: ne1 v (MK L,
§,— 8(S5) if (1—-4) Y " 0%, — 8 as n— o0;
k=0

—
=

5, — 8(T5)

i 2
(1=8)y*' ¥ ("Z )5%‘,,”—»\; as n— o0,
k=0

Let I" denote the family of all the methods (B, , §) and ¥, with « >0, and
all the methods E;, S;, and T; with 0 < & < 1. The non-Borel-type methods
in /" are commonly called “circle” methods. All the methods in I” are
regular and not equivalent to convergence. For basic properties of these
methods see [1,4,6,9].

In general C;-summability does not imply summability by any member
of I. However, the following result is known [7, Theoremd; 2,
Theorems 1, 2, and 3].

Tueorem C. If s,=s+o(n""?), then {s,} is summable to s by every
member of I.

It is also known [4, p. 59] that C,-summability implies /-summability,
but that /-summability does not imply C,-summability. Parameswaran has
proved [8, Theorem 1] the following theorem.

THEOREM L. If
1 2 = u (n‘”z
— “+ 5
lognk§0k+1 S+logn 2 log n

then {s,} is summable to s by every member of I' (and by C,).

It is easily seen that log n can be replaced by Q, :=37%_, 1/(k + 1) in the
above hypothesis. Thus Theorem L shows that /-summability together with
an order relation implies C,-summability.
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2. RESULTS
It is the aim of this paper to establish the following two theorems.
THEOREM . Suppose that

el 1 OE™Y (1)

n

and

1/2
wsvgro(ar) @

where s and p are constants. Then {s,} is summable to s by every member
of I' (and by C,). Moreover, o cannot be replaced by O in (2). Indeed, there
exists a C-summable bounded sequence {s,} which is not summable by any
member of I" and which satisfies

nl/Z
L=10 (-i)
0,
This shows that M -summability together with an order condition
implies summability by every member of I" and that the order condition is
best possible in a strong sense. If the sequence {g,} satisfies n'%g, — oo,

then the term w/Q, in (2) can be absorbed into the term o(n'g,/Q,), and
so Theorem C is special case of Theorem 1.

THEOREM 2. Suppose that condition (1) holds, and that

HQHSn=OL(1)’ (3)
1
=0(1), (4)
nq,
and
1 g 1/2 -1
0 Z K Qr=p+o(n ), (5)
k=1

where p is a constant. Then {s,} is sumable to O by every member of T

The notation x,=0,(1) signifies, as usual, that liminfx, > — co.
Theorem 2 generalizes another of Parameswaran’s results [8, Theorem 2.
His result is essentially the case g,:=1/n of our Theorem 2. The first
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conclusion of Theorem 1 is an immediate consequence of Theorem C and
the following lemma.

Lemma.  Suppose that conditions (1) and (2) hold. Then
s, =s+o(n" 7).
Proof.  We may suppose that s=0. Let

T = 1, 0

Then, for n =1,

Tn— Tyt —H 1 1
8, = q ‘u_ : (Tnl‘u)(—* )s

4n—1 Gn G-
so that
fcgos;‘::f%ikzl (Tk_l_u)(;];_lel)-{—;O (6)
and so
Sflw:()(nfw)“_]"“ i (Tk—l_#)(i— 1 ) (7)
n+1,2, e Ge-a

Next, by (2), we have that 7, = u+¢,.(k + 1)"?g,, where ¢, — 0. Hence, by
(1), we get that

n 1 1
w2 3 o= (o)

qr  qr—1

-l Z k—uzeklk(h_l)zg(l)_ (8)
1

k= i

It follows from (7) and (8) that sl=o(n""?). |

Proof of Theorem 1. As stated above, the first conclusion follows from
the lemma and Theorem C. To prove the remaining conclusions we
observe, as Parameswaran did [8, proof of Theorem 1], that a conse-
quence of a result due to Lorentz [5] is that there exists a bounded
sequence {x,} satisfying x) = O(n~'?) which is not E;-summable for any
d€(0,1). We now define {s,} so that 7,:=1,0,=(n+1)g,x.. Then

T =g, (9)
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It follows from (6) with u =0 that
1 1 1 | 1
S,=Xy— Vs where y, :=1,_ (— ——)
' CJn Gn—1
for m=1 and y,:=0,
and so
Sp =Xy = Vp-

Next, by (9) and (1), we have that

yo= 2=t (B2t 1) = o) = o)
Gn—1 4n

so that {y,} is E,-summable. Since {x,} is bounded and not E;-summable,
it follows that {s,} also has these properties. Now it is known [6, Satz 25:

>

3, Theorem 3] that all members of I” are equivalent for bounded sequences,
and so {s,} cannot be summable by any member of I'. |

Proof of Theorem 2. For nz=1, let

B, e where 1,:=1,0,.

Then we are given that

A Y Bz, =pln—R), (10)

Ly
By [2, Theorem 1 with p=17 and (10),
n'?z,—0(B, a, ). (11)
Further, (10) implies that
z,=0(1). (12)
Next, using the notation Ax, :=x,—x,_,, we have that
A(n'%z,)=n"(z,— 2, 1)+ z,_ (0" — (n — 1))
=2 [(r,— pn ) = (1, — pln— 1) 712)]
4z, (P —(n—1)"%)
=n'2(t, — 1, )+ un (1)1 - p 1)

+anl(njj2_ (n_ 1)1/2)'
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Hence, by (12) and (3),
n'2A(n'22,) = ng, s, +o(1)= 0,(1). (13)

By virtue of a Tauberian theorem for Borel-type methods [3, Theorem 1
with r=0], it follows from (11) and (13) that

n'z, = o(1). (14)

At this stage it is worth noting that if =0, then (14) and (4) imply that
1,=o0(n"?q,), so that the required conclusion follows from Theorem I.
Returning to the general case, we deduce from (6) that

T 1 u 1 1
P B 0 N o B
"o (n+1)g, n+1k§1 ‘ ](Qk ‘i’k—l)
_z,+pn”'? 1 ! ( 1 1)

. (et e (- L
(n+1)g, ”+1k§1 ! 91 i

e {1 1)
————). 15
’H'I(Q'L qo (13)

1 1 1
__=(i 1)__0(])’
Gr+1 Yk Qiv1 G
and consequently it follows from (14) that

n—1 ) 1
n'? Y k'z k2 (L —~—>=o(1). (16)

k=1 r—1 i
Next, by (14), (4), (15), and (16), we have that
Satu,=o(n"1?),

where

gl ;=ﬂ+ # nzlkuz(_l_,_l).
! (n+1)gq, ”+}k=1 T+ 1 qr’c’

whence, for n=2,

by (4). It now follows, by Theorem C and the regularity of the members of
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T, that {u,} and {s,+u,} are summable to 0 by every member of I", and
therefore so also is {s,}. 1

REFERENCES

1. D. BorwEIN, On methods of summability based on integral functions II, Proc. Cambridge
Philos. Soc. 56 (1960), 125-131.

2. D. BorweiN aND T. MarkovicH, Cesdaro and Borel-type summability, Proc. Amer. Math.
Soc. 103 (1988), 1108-1111.

3. D. BorweiN aND T. MARKOVICH, A tauberian theorem concerning Borel-type ar.] Cesaro
methods of summability, Canadian J. Math. 40 (1988), 228-247.

4. G. H. Harby, “Divergent Series,” Oxford Univ. Press, Oxford, 1949.

5. G. G. LorenTz, Direct theorems on methods of summability, Canad. J. Math. 1 (1949),
305-319.

6. W. MeYER-KONIG, Untersuchungen iiber einige verwandte Limitierungsverfahren, Math.
Z. 52 (1949), 257-304.

7. M. R. PARAMESWARAN, On summability functions for the circle family of methods, Proc.
Natl. Inst. Seci. India Part A 25 (1959), 171-175.

8. M. R. PARAMESWARAN, Logarithmic means and summability by the circle methods, Proc.
Amer. Math. Soc. 52 (1975), 279-281.

9. K. ZELLER AND W. BEEKMANN, “Theorie der Limitierungsverfahren,” Zweite erweiterte und
verbesserte Auflage, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15,
Springer-Verlag, Berlin/New York, 1970.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



