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In this second paper I gencralize the result of Paper I, and prove the
following theorem :

Suppose that f(x. y) is a polynomicl in x and y with integer coefficients.
which is trreducible in the field of all rational nwmbers. and that there (s an
infinity of lattice points (. y) on the curve f(a. y) == 0. for which the greatest
prime factor of w is bounded.  Thew the curve is given parametrically by

£ ast. oy = yg(s),
where « 0 1s an integer. n s @ non-negative inleger, and g (s) is a polynomial
in s with rational coefficients.
While the first part depended on the Thue-Siegel theorem, this paper
uses the deeper theorem of Siegel about the lattice points on algebraic
curves.
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I. Suppose that f(r, ) is an irreducible polynomial with rational

coeflicients, and that the equation
J, ) =0
has an infinite set S of different integer solutions (x. y). such that a is
divisible only by a finite system of prime numbers P, P, .... ;. This
condition is satisfied. for instance. in the two cases
S, y)=a—a and [f(x. y)-y—0.

where a # 0 and b are fixed integers: these two trivial cases will be
excluded from what follows.

Then. for the elements (x, y) of S,

=P P . Py,
where € = -- 1, and %, u,, ..., 1, are integers greater than or equal to zero.
Let N be a positive integer and write u, as
w, =, N+ (r==1 2, ... 1.

where the «,” are non-negative integers, while each of the residues «.” has

one of the values
0.1, 2 ..., N1

Since the system of numbers e, u,"’, ..., %,/ has only 2N! different possi-
A > Uy ¢ y

bilities, there is an infinite subset Sy of S, for the elements (v, y) of

which

e=¢€* ) =wF w =w,*, ..., w =u*

have always constant values. Hence, when
X = Puw Py P A=t Pt Py P

so that A is a constant integer, while the integer X depends on x and tends
to oo with «, then, for the elements of Sy,

x=AX"¥,

Hence there is, in particular, an infinite set of solutions of

in integers X, y.

2. Now, by a theorem due to Siegelf, there can be an infinity of lattice
points on an algebraic curve only when this curve is of genus zero. Hence,
we get the following two results:

t Abh. Preussische Akad. Wiss. (1929), Math.-Phys. Ki., Nr. 1, Zweiter Teil,
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(a) Both coordinates x. y of the curve f(r. y) — 0 are uou-constant
rational functions
(1) xoe=r(l), oy =)
of a parameter (, and this parameter can be chosen in such a way that it
is itself a raticnal function
) =152, ¥)
of x and .

(b) For every positive integer N, the coordinates X = (x/4)V¥ and
y on the curve f(AXY, y) = 0, and therefore also /¥ and y. are rational
functions
(3) VN = R(T), = Ry(T)

of a second parameter 7.
Hence. in particular,

(4) te=ry( BTN, Ry(T)) — R(T)
say, must be a rational function of 7.

Therefore, corresponding to the given rational function »(f) and to every
given positive integer N, there must exist a non-constant rational function
R(T), such that 9'(,[{(’1’)) is the exact N-th power of a rational function
of 7. This gives an infinity of different algebraic conditions for r(t).
In general, as we shall see, these conditions cannot be satisfied.

3. Obviously, ¢ is determined except for an arbitrary linear trans-
formation. Therefore. without loss of generality, we may suppose that
r(t) is regular and not zero for /= oo, so that

ni

(5) 1 r(t) = a L ({—ay)™.
k=1
where a -4 0 is a constant, a;. a,. .... a, are the different zeros and poles
of #(t). and n,, n,. .... n,, are non-vauishing integers with a sum
(6) Ny, g, = 0.

Since r(t) is not a constant. it must have at least one zero and one pole,

—9

and therefore m >2.
The second rational function R(7') can be written as a quotient
p(7)
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of two coprime polynomials p(7') and (7). of which at least one is not a
constant. Then, by (6),

7 m P (T) K " ) ",
P R(TY) — o 11 (-, o) —a T p(T)—apq(m))™
L ()) ; 9(17) A) I:}(/() /]( ),
and this must be the exact N-th power of a rational function. Now. since
all the q; are different. no two of the m polynomials

p(T) = apq(T) (k=12 ... m)
vanish together or are both constants. Hence r( R(’I’)) is an exact N-th
power. if and only if all m polynomials
(7) p(T)—apq(T) = P Ty (k==1.2 .. m)

are the N-th powers of certain polynomials £,(7"). and here no two of these
PO} i
P.(T) have a common zero or arc both constants.
Suppose, in particular, that m = 3. Then. by eliminatine »(7) and
A g/
g(?') from the first three equations (7). we have

~

1)‘,_\
Ay 0y /’3("/‘{)," I

L/ () DT e ey Bl
N o ) PUT) AY
identically in 7. so that the coordinates of points of the curve
ét,\' _,gAn.\' — ]
are represented as rational. non-constant functions of a parameter. But.
for N > 3. this curve is at least of genus one. since it has no sin
Therefore, the assumption m

gular points.

= 3 leads to a contradiction.

4. Hence, necessarily. m 2. n;— —n, = n, and
/ ,,,,, a NN
r(l) ((,k —l) —as”,
l—a,

with the new parameter s = (o) ({-—a,). The constant « 0 is still
arbitrary ; we choose it as an integer in such a way that there is an infinite
set S* of lattice points (v. y) on the curve

(8) S, y) = 0.
for which x — as" with integer s: this is possible by §1. Then, by §2.
re=as’, Yy ==g(s)

identically in s on our curve (8), where ¢(s) is a rational function of s.
By considering the elements of S*, it follows that g(s) is an integer for
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infinitely many integer values of s; therefore its coefficients may be taken
to be rational numbers, and we can write

g(s) = g1(8)+ga(8),

where ¢,(s) i¢ a polynomial with rational coefficients, while ¢, (s) is a rational
function which vanishes for s = co.  Hence there is a positive integer b,
such that fg, (s) has integer values for all integers s.  Also, if ¢,(s) does not
vanish identically, then 0 <2 [g(s) <2 1/h for all sufficiently large s; and so,
for sufficiently large s. g(s) cannot be an integer. Therefore ¢(s)=y¢,(s) is
a polvnomial with rational coefficients, and the theorem is proved .
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