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a rational number.

By

Kurt Mahier (Manchester).

Let u and v be two coprime integers with u > v > 1, such that 5 -~ 1,

suppose that
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Then the following resulls, as special cases of more general theorems, are
proved in this paper:
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b: When ¢ is a positive constant and
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for an infinite sequence of positive integers n=n,, n.. n,, ... with

n, = n, then
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The proofs of a) and b) depend on generalizations of the Thue-Siegdel
theorem. due to Schneider or myself, and are very simple.
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1) Some years ago, I proved the following theorem *):

') Math. Annalen 107 (1932), 691—730, in particular g4t 2, p. 722.
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LEMMA 1: Let F(x,y) be an irreducible binary form of degree n 3
with integer coefficients, x and y two coprime integers, P,. P.. ... Pt
(t= 1) a finite number of different prime numbers, and Q (x,y) =
Ph Pl Pl the greatest product of powers of these primes. which divides
F(x,y). Then

Q (x7Y) < ¢, max (x ,3};') Zl'yni,

where ¢, > 0 is a constant. which does not depend on x and y.
From this lemma, the following one is a trivial consequence:

LEMMA 2: Let a, b, x be three non-vanishing integers. n = 5 a prime
number, v an integer > 2, and q (x) = v’ the highest power of v. which di-
vides ax"—b. Then

g(x) <c, [x2n 1,

11

where ¢, > 0 is a constant, which does not depend on x.

Proof: Since n is an odd prime, the binary form F (x,y) = ax" — by"
either is irreducible, or of the form

F(xy) = (#x —(y) G(xy),
where o, fi are integers, and G(x.,y) is an irreducible binary form of degree
n—1. Suppose that P,, P.. ..., P, are the different prime factors of v. Then
apply Lemma 1 with y =1 to F(x.y) in the first case. and to G(x.y) in the
second case. Then we det
qx) = O (x 2'")
in the first case, and
g(x) = O(x - x 2=

in the second case, since ax—fi= O {x).

THEOREM 1: Let a, b, u, v be four non-vanishing integers with
u=>v->1. Then the equation

(1): aut— v’y = b

has at most a finite number of solutions in integers x >0 and y.
Proof: Let & be the number

thus 0 < % < 1. Take for n a prime number > 5, such that
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142 yn <in;

this condition is satisfied, for instance, when

Obviously. to every solution x.y of (1), there are two integers S and v with
x=nitv, €20, 0<v<n—1, au(u)"—b=vy V)"
Hence
au’ X" — b, where X = u’,
is divisible by a power of v, which, at least. is equal to
(%)= X"
But by Lemma 2. applied to each of the n polynomials
au” X" b (v=0,1,..,n— 1),
this power of v must be
o,

and therefore X and x connot be arbitrarily large. i. e.. (1) has at most

a finite number of solutions, q. e. d.
THEOREM 2: Under the conditions of theorem 1, the congruence

au* = d(mod v¥)
can hold only for a finite number of integers x = 0.

THEOREM 3: Suppose that a, u, v are integers with a +0, u>v > 1,

v T u. Then
)~

These two theorems are trivial consequences of Theorem 1. In the
case of Theorem 3. the additional condition v + u makes it impossible, that
au* — Xy =0 has an infinity of solutions.

im_ 1o (2] -

n-—oe

IL.

2) The following theorem can be proved:

LEMMA 3: Let %0 be an algebraic number and p, q,. p./q.. p;/q..
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... an infinite sequence of simplified fractions with the following properties:

a: 1 <qx ~q, <q; —-- -

b: For every n. p, and q_ can be written as

Po=Ple Pepr, ¢, = Qhnr . Ql g’

where P.,..., P, Q,....,Q, isa given finite system of different
prime numbers,h ,..., h, k ,..., k, are integers > 0 and p; , q;
are integers, such that as n— ~

pr=0p9, ¢ —0(g)

[¥e)

where o, " are given constants with0 <2 <1, 0 < 1.

c: For every n

where v is a constant with = v+ 7.

T hen

lim sup log guin ~
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For a« = =1, s =t =0, this theorem was proved by Th. Schnei-
der ?), and by using his method, I proved it*) for « = 0, [i=1, £ =0, or for
w==1, =0, s=0. or for «. =B = 0. The same method, however, leads also
to the general result of Lemma 3, as a study of the proof shows. (It is suffi-
cient for this purpose, to use approximation polynomials of the form

% I, 71, [
Rz, z,,...,2) = N R, 2{% ... 2k,
sz 12

k
where the summation sign refers to all integers [,, I, ..., I, with
L
0<[<r, 0-L<r,,. .., O<lk<rk, k(l_s)\gi \j t < k(i +z).
2 h-r—ll r, 2

Compare Kapitel 1 of my paper, in particular § 6 and § 8).

2) Journal reine u. angew. Math. 175 (1937), ,Uber die Approximation alde-

braischer Zahlen".
%) Proceedings Royal Academy Amsterdam, 39 (1937), 633—640, 729—737.
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THEOREM 4: Suppose that %= 0 is an algebraic number and that
u and v are integers with u > v > 1, v + u. that ¢ is a positive constant. and
that n=n,. n.. n.. ... is an infinite increasing sequence of positive integers,
for which

1) n . ) n- —en
2): {}(v} "l\"(uv’) lg u .
Then
lim sup S o
Y~ n,
Proof: If again
. _log v
=SS
log u
then (2) obviously is equivalent to
IQ(u "]
vt v v \" . — (=42
0<d— lu;,”} é(u\ T g o

Hence, Lemma 3 can be applied with

p—v|d (,‘}) P [* S RO §
so that
o=1—hn, 3=0, 2 +E<yv=1—lh+z=,

and the assertion follows at once.
Probably. (2) has only a finite number of solutions for n.
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