A PROOF OF HURWITZ'S THEOREM.

By K. MAHLER, Manchester.

Lemma 1: Let
$$x$$
 be an irrational real number, ϵ a positive number. Then there is a modular substitution
$$\Omega = \begin{pmatrix} a & \beta \\ \gamma & \delta \end{pmatrix}, \ a\delta - \beta\gamma = 1 \quad (\alpha, \beta, \gamma, \delta \text{ integers}),$$

such that
$$|ax + \beta| < \epsilon, |\gamma x + \delta| < \epsilon, |\gamma (\gamma x + \delta)| \le 1, \quad 0 \le a \le \gamma.$$
Proof: Since x is irrational, there exists a positive monotone

increasing function $\psi(t)$ of the variable t > 1, such that $\lim \ \psi(t) = \infty,$

and that the inequalities
$$0<\gamma<\psi(t)\,,\quad \big|\;\gamma x\,+\,\delta\;\big|\leq \frac{1}{t}$$

have no solutions in integers γ , δ . Suppose that t is already so large that

 $\frac{1}{t} < \epsilon$, $\frac{2}{w(t)} < \epsilon$. By Dirichlet's principle (the Schubfachprinzip) there are two integers γ and δ , such that

 $0 < \gamma \le t$, $|\gamma x + \delta| \le \frac{1}{\epsilon}$

and therefore

prime. Hence we can find two other integers a_0 , β_0 , such that $a_0\delta - \beta_0\gamma = 1$. The most general solution of $a\delta - \beta\gamma = 1$ is given by $\alpha = \alpha_0 + \gamma k$, $\beta = \beta_0 + \delta k$,

 $| \gamma x + \delta | < \epsilon, | \gamma (\gamma x + \delta) | \leq 1, \quad \psi(t) \leq \gamma \leq t.$ Obviously, γ and δ may be supposed to be relatively

where k is an arbitrary integer. We chose k such that

$$0 \le a \le \gamma \le t.$$
 From the identity
$$a(\gamma x + \delta) - \gamma(ax + \beta) = 1$$

then follows that
$$\left| \ ax + \beta \ \right| = \left| \frac{1}{\gamma} \right| \ \left| \ a(\gamma x + \delta) - 1 \ \right| \leq \\ \leq \left| \frac{1}{\gamma} \right| \left\{ \left| \ \gamma(\gamma x + \delta) \ \right| + 1 \right\} \leq \frac{2}{w(t)} < \epsilon,$$

as was to be proved. —

Notation: If
$$\Omega = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 is an arbitrary matrix, x a real or complex number, then we write

complex number, then we write $\Omega x = \frac{\alpha x + \beta}{\gamma x + \delta}.$

Lemma 2: Let x and y be two different real numbers, ϵ

a positive number. Then there is a modular substitution

 $\Omega = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, for which $|\Omega x - \Omega y| \ge \sqrt{5}, |\gamma x + \delta| < \epsilon.$ Proof: For rational x, there exists a substitution Ω in

which $\gamma x + \delta = 0$, so that the lemma is obvious. Suppose therefore that x is irrational. By Lemma 1, applied with $\frac{\epsilon}{5}$

instead of ϵ , there is a modular substitution $\Omega_{m{0}}=\left(egin{matrix} a_{m{0}} & eta_{m{0}} \ v_{m{0}} & m{\delta}_{m{0}} \end{matrix}
ight)$ such that

 $0 \leq a \leq \gamma$.

 $\left| a_0 x + \beta_0 \right| < \frac{\epsilon}{5}, \quad \left| \gamma_0 x + \delta_0 \right| < \frac{\epsilon}{5},$ $|\gamma_0(\gamma_0x+\delta_0)|\leq 1$,

Without loss of generality

 $\left| \left(\gamma_0 x + \delta_0 \right) \left(\gamma_0 y + \delta_0 \right) \right| = \left| \left(\gamma_0 x + \delta_0 \right)^2 + \gamma_0 \left(\gamma_0 x + \delta_0 \right) \left(y - x \right) \right| \le$ $\leq |x-y| (\frac{1}{5}+1) = \frac{6}{5} |x-y|,$

Hence

and therefore

Ιf

hence

hence

since

and therefore

If, however,

and therefore

 $\left| \Omega_0 x - \Omega_0 y \right| = \left| \frac{x - y}{(\gamma_0 x + \delta_0)(\gamma_0 y + \delta_0)} \right| \ge \frac{5}{6}.$ If $|\Omega_0 x - \Omega_0 y| \ge \sqrt{5}$, then Ω_0 has the required properties. Hence assume that

Let k be an integer and

 $X = \Omega_0 x$, $Y = \Omega_0 y$, $\lambda = X - Y$, $\mu = X + Y$,

then chose k such that

then we determine k such that either

 $U(k) = \frac{-1}{X+k} - \frac{-1}{Y+k} = \frac{4\lambda}{(\mu+2k)^2 - \lambda^2}.$

 $|\mu + 2k| < 1$:

 $\frac{4}{\sqrt{5}} \le |\lambda| < \sqrt{5}$,

 $-2 \le \mu + 2k \le -1 \text{ or } 1 \le \mu + 2k \le 2;$

 $|(\mu + 2k)^2 - \lambda^2| \le \max\left(2^2 - \left(\frac{4}{\sqrt{5}}\right)^2, \lambda^2 - 1\right) =$

 $= \max \left(\frac{4}{5}, \lambda^2 - 1 \right) = \lambda^2 - 1,$

 $| U(k) | \ge \frac{4 | \lambda |}{\sqrt{2}} \ge \sqrt{5}$,

 $\frac{5}{6} \leq |\Omega_0 x - \Omega_0 y| < \sqrt{5}$.

 $\left| \frac{5}{6} \leq \left| \lambda \right| = \left| \Omega_0 x - \Omega_0 y \right| \leq \frac{4}{\sqrt{5}},$

 $| (\mu + 2k)^2 - \lambda^2 | \le \max (1^2, \lambda^2),$

 $|\operatorname{U}(k)| \ge \begin{cases} 4 |\lambda| > \frac{10}{3} > \sqrt{5} \text{ for } \frac{5}{6} \le |\lambda| \le 1, \\ \frac{4 |\lambda|}{\lambda^2} = \frac{4}{|\lambda|} \ge \sqrt{5} \text{ for } 1 \le |\lambda| \le \frac{4}{\sqrt{5}}. \end{cases}$

so that identically

Hence in all cases

for a certain integer k; if Ω denotes the matrix

 $\Omega = \begin{pmatrix} \alpha & \beta \\ \mathbf{v} & \delta \end{pmatrix} = \begin{pmatrix} -\mathbf{v_0} & -\mathbf{\delta_0} \\ \mathbf{a_0} + k\mathbf{v_0} & \mathbf{\beta_0} + k\mathbf{v_0} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & k \end{pmatrix} \Omega_{\mathbf{0}},$

 $|\Omega x - \Omega y| \ge \sqrt{5}$. In order to show that $|\gamma x + \delta| = |(a_0 x + \beta_0) + k(\gamma_0 x + \delta_0)| < \epsilon,$

 $|U(k)| \ge \sqrt{5}$

hence, since $0 \le a_0 \le \gamma_0$, $\gamma_0 \ge 1$,

 $x = \frac{1 + \sqrt{5}}{2}$, $y = \frac{1 - \sqrt{5}}{2}$,

 $|\Omega x - \Omega y| \le \sqrt{5}$.

 $|\Omega x - \Omega y| = \frac{4\sqrt{5}}{+\phi(x-\delta)},$

 $\Phi(\gamma, \delta) = (\gamma + 2\delta)^2 - 5\gamma^2$

Theorem of Hurwitz: Let a, b, c, d be four real numbers of

 $2 |k| \le |\mu| + 2, |k| \le 4.$

 $|\mu| \le |\lambda + 2Y| \le \sqrt{5 + 2} \cdot \frac{3}{2} \le 6$,

 $Y = \Omega_0 y = \frac{a_0 y + \beta_0}{\gamma_0 y + \delta_0} = \frac{a_0 (y - x) + (a_0 x + \beta_0)}{\gamma_0 (y - x) + (\gamma_0 x + \delta_0)};$

it is obviously sufficient to prove that $|k| \le 4$. Now

 $| \ \mathbf{Y} \ | \le \frac{\gamma_0 \, | \, x - y \, | + \frac{\epsilon}{5}}{\gamma_0 \, | \, x - y \, | - \frac{\epsilon}{\epsilon}} \le \frac{| \, x - y \, | + \frac{1}{5} \, | \, x - y \, |}{| \, x - y \, | - \frac{1}{5} \, | \, x - y \, |} = \frac{3}{2}.$

then for all modular substitutions $\Omega = \begin{pmatrix} a & \beta \\ & \delta \end{pmatrix}$

is always divisible by 4 and does not vanish.

Therefore

Lemma 3: If

Proof: Obviously

and

where

then

determinant ad-bc=1, ϵ a positive number. Then there are two integers u and v, such that $|(au + bv)(cu + dv)| \le \frac{1}{\sqrt{5}}, |au + bv| < \epsilon, u^2 + v^2 > 0.$

 $a = \frac{1 + \sqrt{5}}{21^{1/5}}, b = \frac{1}{1^{1/5}}, c = \frac{1 - \sqrt{5}}{21^{1/5}}, d = \frac{1}{1^{1/5}},$

If

then

for all integers
$$u$$
 and v , which do not vanish simultaneously. Proof: It suffices to prove the theorem for integers u and v , which are relatively prime. There is, therefore, a modular substitution $\Omega = \begin{pmatrix} a & \beta \\ v & \delta \end{pmatrix}$, such that $\gamma = u$, $\delta = v$. Put

 $|(au + bv)(cu + dv)| \ge \frac{1}{\sqrt{5}}$

 $\frac{a}{b} = x$, $\frac{c}{d} = y$, so that $\frac{a}{b} - \frac{c}{d} = \frac{1}{bd} = x - y$; then identically

$$\frac{1}{(au + bv)(cu + dv)} = \frac{x - y}{(\gamma x + \delta)(\gamma y + \delta)} = \Omega x - \Omega y;$$
and the theorem follows at once from the last two lemmas

and the theorem follows at once from the last two lemmas.