NOTE ON THE SEQUENCE \sqrt{n} (mod 1)

BY

KURT MAHLER in Manchester.

In this note, we denote by

$$\mid \alpha \mid < \lambda \pmod{\mathfrak{1}}$$
 and $\mid \alpha \mid \geqq \lambda \pmod{\mathfrak{1}}$,

that there is a rational integer g such that

respectively, that no such integer exists.

It is well known that the sequence

$$\sqrt{1}$$
 , $\sqrt{2}$, $\sqrt{3}$,...

 $|\alpha + \varrho| < \lambda$.

$$\sqrt{1}$$
 , $\sqrt{2}$, $\sqrt{3}$,... is uniformly distributed modulo 1^{-1}); hence for every real ξ

and for every
$$\varepsilon > 0$$
, the inequality

 $|\xi - \sqrt{x}| < \varepsilon \pmod{1}$

has an infinity of integral solutions
$$x$$
. The three following

theorems 1, 1a, and 2 give more precise information:

 $\varepsilon > 0$, there is an infinity of integral solutions x > 0 of $|\xi - \sqrt{x}| < \frac{1+\varepsilon}{2\sqrt{5}x} \pmod{1}.$

Theorem 1: To every real irrational number ξ and to every

Theorem 1a. There is a constant c > 0, such that for real irrational ξ and real η , the inequality

$$|\xi - \sqrt{x + \eta}| < \frac{c}{x} \pmod{1}$$
 has an infinity of integral solutions $x > 0$.

See J. F. Koksma, Diophantische Approximationen, (Berlin 1936), Satz 4, p. 89.

Theorem 2: To every rational number ξ there is a positive

number $c = c(\xi)$, such that for all positive integers x either $|\xi - \sqrt{x}| \ge \frac{c}{\sqrt{x}} \pmod{1}$ or $\xi - \sqrt{x} \equiv 0 \pmod{1}$.

Proof of Theorem 1: We use the two trivial identities
$$(\xi+y-\sqrt{x})(\xi+y+\sqrt{x})=(\xi+y)^2-x=\xi^2+2\xi y+(y^2-x)$$
.

 $+y - \sqrt{x})(\xi + y + \sqrt{x}) = (\xi + y)^2 - x = \xi^2 + 2\xi y + (y^2 - x), \quad (1)$ $\xi + y + \sqrt{x} = (\xi + y - \sqrt{x}) + 2\sqrt{x}. \quad (2)$

By a theorem of A. KHINTCHINE ¹), there is an infinity of pairs of integers x, y with $y \to +\infty$, such that $|\xi^2 + 2y\xi + (y^2 - x)| \le \frac{1 + \frac{1}{2}\varepsilon}{\sqrt{\epsilon} y}. \tag{3}$

By (1) and (2), for this sequence
$$\xi + y - \sqrt{x} \rightarrow 0$$
, $\xi + y + \sqrt{x} \sim 2\sqrt{x}$, $y \sim \sqrt{x}$.

 $\xi + y - \sqrt{x} \rightarrow 0$, $\xi + y + \sqrt{x} \propto 2\sqrt{x}$, $y \propto \sqrt{x}$,

and therefore for all sufficiently large
$$x$$
 of the sequence
$$|\xi + y - \sqrt{x}| < \frac{1+\varepsilon}{\sqrt{5}\sqrt{x}} = \frac{1+\varepsilon}{2\sqrt{5}x}, \quad \text{q.e.d.}$$

Proof of Theorem 1a. By Khintchine's theorem, there are arbitrarily large integers X > 0, Y, such that

$$\mid$$
 2 ξ X — Y — η + ξ^2 \mid $<$ $\frac{\mathrm{I} + \varepsilon}{\sqrt{5}\mathrm{X}}$

and therefore Y = O(X). Put $x = X^2 + Y$. Then by the binomial-theorem:

$$\left|\theta x-y-\beta\right|<\frac{1}{(\sqrt{5}-\varepsilon)x}$$
 has integral solutions x , y with arbitrarily large $x>0$; here ε is an arbitrary

constant with o $< \varepsilon < \sqrt{\frac{1}{5}}$.

¹) See Koksma, D. A., Footnote p. 76. The theorem says that for irrational θ and arbitrary β , the inequality

$$\sqrt{x+\eta} = \sqrt{X^2 + Y + \eta} = X + \frac{Y + \eta}{2X} - \frac{1}{8} \frac{(Y + \eta)^2}{X^3} + O\left(\frac{1}{X^2}\right) =$$

$$= X + \left\{ \xi + \frac{\xi^2}{2X} + O\left(\frac{1}{X^2}\right) \right\} - \frac{1}{8} \left\{ \frac{4\xi^2}{X} + O\left(\frac{1}{X^2}\right) \right\} + O\left(\frac{1}{X^2}\right),$$

and so finally

$$\sqrt{x+\eta} = X + \xi + O\left(\frac{1}{X^2}\right)$$
, i.e. $|\xi - \sqrt{x+\eta}| = O\left(\frac{1}{x}\right) \pmod{1}$. Q.e.d.

Proof of Theorem 2: Let $\xi = \frac{p}{q}$, where (p, q) = 1. Then the integer $q^{2} | (\xi + y - \sqrt{x})(\xi + y + \sqrt{x})| = |p^{2} - 2pqy + q^{2}(y^{2} - x)| \begin{cases} = 0 \text{ or } \\ > \tau \end{cases}$

 $\xi + \nu - \sqrt{x} \rightarrow 0$

then

If

$$\xi + y + \sqrt{x} \sim 2\sqrt{x}$$

and so for $\varepsilon > 0$ and all sufficiently large x

and so for
$$\varepsilon > 0$$
 and all sufficiently large

 $|\xi + y - \sqrt{x}|$ = 0 or $\geq \frac{1 - \varepsilon}{2\sigma^2 \sqrt{x}}$, g.e.d. From the two theorems I and 2, we get the Corrollary: Let α be any number > 2. Then the real

number ξ is rational, if and only if the infinite series

number
$$\xi$$
 is rational, if and only if the infinite series
$$\sum_{k=0}^{\infty} \left| \frac{1}{k} \operatorname{ctg} \pi \left(\xi - \sqrt{k} \right) \right|^{\alpha} \qquad \text{for}$$

converges; infinite terms are to be excluded. The Gugh, Scilly Isles. July 1939.