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LATTICE POINTS IN TWO-DIMENSIONAL STAR DOMAINS (II)

By KURT MAHLER.
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In this second part I give, in Chapter II, some general results on
symmetrical or unsymmetrical convex domains. In Chapter III, A(//)
is determined for any circle, square, or triangle in the (x, ^)-plane which
contains the origin as an inner point.

CHAPTER II. CONVEX STAR DOMAINS.

18. A restriction.

In this chapter we consider only symmetrical or unsymmetrical star
domains whose boundaries do not include segments of straight lines.
Results for the excluded domains can be found by using the method of
the first chapter, and are more complicated.

19. Convex domains symmetrical in the origin.

We recall that a bounded and closed point set in the (x, 2/)-plane is
called convex if with any two points Pt and P2 it contains all points

tPl-\-{l—t)P2, whe re 0 < « < l .

The convex set is symmetrical in a point Q if with a point P it contains
also the point 2Q—P. We consider only convex domains of which 0
is an inner point, and whose boundary consists of a finite number of
analytical arcs; i.e. these domains are symmetrical or unsymmetrical
simple star domains (§§8 and 16).

Let K be a convex domain symmetrical in 0. By Theorem 14 and
by the restriction in § 18 there are no singular lattices. Therefore every
critical lattice of A' contains at least three pairs of points ±.Plt i A
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on C. The triangle with vertices at Pl 5 P2, P 3 lies entirely in K. Hence,
by Theorem 11,

ind (Plf P2) =-- ind (Pl5 P3) = ind (P2, P,) = 1.

Hence we may choose P1 and P2 as a basis of the lattice, and then, without
loss of generality,

P — P —P

Therefore those admissible lattices are critical which contain three points
of this special kind on C and have minimum determinant. This is exactly
Minkowski's resultf, as it ought to be since our method is derived from his.

The results of the first chapter enable us to determine A (if) for convex
domains which are not symmetrical in the origin. For a special class of
these unsymmetrical convex domains, particularly simple results are
obtained in the next paragraph.

20. Strongly unsymmetrical convex domains.

Let H be an unsymmetrical convex star domain and let — H be the set
of points P for which — P lies in H, and let K be the set of points which
belong to at least one of these two domains. We say that H is strongly
unsymmetrical if the boundaries of H and — H have at most a finite
number of points of intersection.

For instance, every convex star domain H which is symmetrical in a point
Q £̂ 0 is strongly unsymmetrical. For assume that the assertion is false.
Then, by Theorem 13, the boundaries of H and —H have an arc A in
common, and so also the arc —A symmetrical to A in 0. We can find
a point P on A which is different from the symmetrical points — P on
—A and 2Q—P on 2Q—A, and at which there exists a tangent to the
boundary of H. Then H has just one tac-line at each of the three points
P, — P, and 2Q—P, and by symmetry these three lines are parallel. This,
however, is impossible, since a convex domain has only two tac-lines of
given direction.

Let now H be an arbitrary strongly unsymmetrical convex domain,
and denote by C+ and C_ those parts of the boundary C of K which belong
to H and —H, respectively. The two curves C+, C_ have only a finite
number of common points, say the set £*. The elements of 2* can be
arranged in pairs P, — P of points; include one of these points in C+, and
the other in C_.

•J- Diophantische Approximationen (Leipzig und Berlin, 1907), Kapitel 11, § 14.
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It is evident from Theorem 14 that the four points of a singular lattice
of K which lie on the boundary G belong to 2*. Since 2* has only a
finite number of elements, no difficulty arises in finding which of these
lead to singular lattices.

Consider now a regular lattice A, and let ± P l 5 ± P 2 , •-, ±Pq, so that
q ^ 3, be its points on C. Let the notation be such that the points with
positive signs belong to C+, and those with negative signs to G_. The
line segments joining any two of the points Plt P2, ..., Pq lie entirely in
H and so also in K. Hence, by Theorem 11,

(32) ind (PM, Pv) = 1 0 * ^ = 1 , 2 , ...,q-i /* # i/).

We take Px and P 2 as a basis of A; by our notation, — Pl and — P2

belong to G_. From (32), the lattice points P3, P4, ..., Pq on C are of
one of the four types

Suppose first that q > 3, so that at least two of these four points, say P 3

and P4, belong to G+. Then P 3 + P 4 ^ 0, since otherwise one of these
points would belong to C_. Hence, by the form of P 3 and P4,

is also a lattice point different from O. By the convexity of H, P 5 belongs
to H and therefore lies on its boundary. The three points P3, P4, P 5 on
the boundary of H are collinear; hence the line segment joining P 3 and
P4 forms part of this boundary, contrary to the restriction in § 18.

We have, then, q = 3, and there is only one further lattice point
P 3 = ± P i ± P 2

 o n 0. We may, if necessary, interchange the indices of
P1} P2, P 3 ; therefore either

P3 = P1-P2 or Pz=-Px-P2.

We have thus proved

THEOREM 16. Let A. be a regular lattice of a strongly unsymmetrical
domain H. Then the set G+ on the boundary of H contains exactly three
lattice points, and these lattice points are of one of the two types,

Pv P2, Pt-P2, or Pv P2, -P1-P2.

CHAPTER III. THB UNSYMMMETRICAL CIRCLE, SQUARE, AND TRIANGLE.
By means of the results so far obtained, I determine the value o

for every circle, square, or isosceles right-angled triangle in the (x, y)-plane
which contains the origin 0 as an inner point. A suitable affine trans-
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formation extends these results to arbitrary ellipses, parallelograms, or
triangles containing 0 as inner points.

I am much indebted to Mrs. W. R. Lord for the simple geometrical
proof in §21.

21. The circle.

Let

(33)

and let H be the circle

(34) (z

of radius r with centre at the point P : (a, 0). By (33), / / contains O as
an inner point, and is not symmetrical in 0.

The domain —H symmetrical to H in O is defined by

(35)

The boundaries of H and — H intersect at the two points

Q': (o, V(r2~a2)) and Q": (o, - v > 2 - a 2 ) ) ,

which are symmetrical in 0. Denote by C+ that arc of the boundary of
H for which

(36) x > 0,

and by G_ the arc of the boundary of — H symmetrical to C+ in 0.
Since the boundaries of H and — H intersect at two points only, there

are no singular lattices. Therefore every critical lattice A of H contains
three points Pv P2, P 3 on C+; the symmetrical points —Pi, — P2, —P*
lie on C_. By (36),

hence, without loss of generality, by Theorem 16, we may take

(37)

The problem now is to find three points Px, P2, P 3 on C+ satisfying
(37) and generating a lattice A of minimum determinant. .This is equivalent
to finding a parallelogram II of minimum area J with vertices at 0, Px,
P2, P3, where Pl 5 P2, P 3 lie on C+.

SBIU 2. vol.. 49. NO. 2359. M
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The geometrical method of Mrs. Lord proceeds as follows:
Let Q be the centre of II, that is, the point

f\ * 2 •* 1

Further, denote by u, v, w the distances

and by a the angle OQP. Since QP is perpendicular to Px P3, a is the
complement of the angle between the diagonals. With our notation,

Also by a well-known property of the medians of a triangle

(38) 2(u2+v2) = a?-\-r2.

Therefore, by the cosine theorem,

Q2 _l_ y2
r2 = u2-\-v2-\-2uv cosa = 2

r2-a?and cos a =

Hence
- o (r2-a2)w r2-a2 /(r2

J = 2uwcoSa= 2v =—r

since v2-\-w2 = r2.

By (38), this expression for J can be written as

r __ ^2—«2 / / 2r2
J ~~2~ V V

By this formula, J is an increasing function of u, so that its minimum
is attained for the smallest possible value of u. Now, if P2 runs over C+,
then Px and P 3 vary on C+ in the same direction as P2. Therefore the
minimum of J is assumed if either Px = Q" or P3 = Q'. We obtain the
same lattice in both cases, namely that with the following four points
on C+,

(39)

(0, V(r2-a2)),

/2a+V(o2+3r2) V(r2-a2)^
iv

\ /2g+V(a2+3ra) -V(r a -qa) \
/ ' \ 2 » 2 / '
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This lattice Ao is therefore critical; its determinant is

d(A0) =
 V ( r 2

2 ~ a 2 ) {2a+V(a2+3r2)},

and there are no further critical lattices. Hence we have

THEOREM 17. Let a and r satisfy (33), and let H be the circle (34).
Then

(40) A(H) = W
2
 a)

There is only one critical lattice Ao; this contains the four points (39) on C+.

By continuity, the formula (40) remains true if a = 0; in this limiting
case we obtain Theorem 3. In the excluded case a = r, there are
admissible lattices of arbitrary small positive determinant.

22. The square.

Let

(41) 0 < a < r and 0<6<r,

and let H be the square

(42) |s-a|<r, |2/-6|<r

with cenfre at P: (a, b) and with sides of length 2r parallel to the coordinate
axes. By (41), H contains 0 as an inner point, and is not symmetrical
in 0.

The domain — H symmetrical to H in 0 is defined by

(43) | *+a |< r and |y+6|<r.

The boundaries of H and — H intersect at the two points

Q': (a—r, r—b) and Q": (r-a, b—r)

which are symmetrical in 0. Denote by C+ that part of the boundary
of H between Q' and Q" which does not belong to — H; and. then let C_
be symmetrical to C+ in 0.

Let A be a critical lattice. When A is singular, then, by Theorem 14,
it contains the two points

P': (a+r, 0) and P": (0, 6+r)

on C. By Theorem 11, these two points form a basis, and so

d(A) = (r+a)(r+6).
M2
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I show presently that there are admissible lattices of smaller determinant;
hence there are no singular lattices.

Let, next, A be a regular lattice of H, and let Pl9 P2, P3 be the three
points of A on C+; the symmetrical points —Pi, — P2, — P3 li© on C_.
It is again possible to choose the notation so that

(44) P 1 + P 3 = P a .

The problem is to find three points of this kind such that the area J of
the parallelogram II with vertices at 0, Pv P2, P 3 is a minimum. The
lollowing is a list of all parallelograms which have to be considered:

(a) r—a^.£^r-\-a. The vertices of II are at

Px: (& b-r); P 2 : (r+a, 26); P3 : (r+a-£, r+6),

and its area is

This area becomes a minimum for £ •= r—a, namely

J1 = r
2 + (a+b)r-Zab = (r+a)(r+6)-4a6.

(b) b—r ̂  7) ^ 0. The vertices of II are at

i V («+»•, l); P2'>(r+a,r+b+ri); P 8 : (0, r+6),

and the area is

«/ = J 2 = ( r+a ) ( r+6)>« / 1 .

(c) a—r ^ ^ < 0. The vertices of II are at

Py.ir+a, 0); P2: (r+a+£, r+6); P3:(^,r+6),

and the area is

'J=J9=(r+a){r+b)>Jv

{d) r—b <?; < r + 6 . The vertices of II are at

P x : (r+a, r+fc-ij); P 2 : (2a , r+6) ; P 3 : (a-r, v),

and the area is

J = J^) = 2av+ (f-a)(r+6).-

Tiiis area is a minimum for rj = r—b, namely
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We see from these formulae that there is just one critical lattice Ao.
This lattice has on G+ the four points

(45) (r-a, b—r), (r+a, 26), (2a, r+b), {a—r, r-b),

and its determinant is

Therefore we have

THEOREM 18. Let a, b, and r satisfy (41), and let H be the square
(42). Then

(46)

There is only one critical lattice A; this contains the four points (45) on C+.

By continuity, the formula (46) remains true if the signs " < " in (41)
are replaced by " = ", provided that the case a = b = r is excluded. In
this exceptional case there are admissible lattices of arbitrarily small
positive determinant.

23. The isosceles right-angled triangle.

Let

(47) a>6>0, 3a+b<2s,

and let H be the isosceles right-angled triangle with vertices at

(48) (-a, b), (-a+s, b+s), (-a+s, b-s),

and —// the symmetrical triangle with vertices at

(a, —b), (a—s, —b—s), {a—s, —b+s).

By (47), the origin 0 is an inner point of the triangle T with vertices at

(-a, 6), (-a+f b-±), (-«+§, 6).

Here the first point is a vertex of H, the second point lies at the centre
of a side of H, and the third point is the centre of gravity of / / .

Evidently the parallelogram II with centre at 0 and vertices at

(a—s, —b—s), [s—a, —2a—b-\-s), (—a-\-s, b+s), (a—s,-2a+b—s)

and of area J = 4(s—a)(a+b)
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is contained, in the star domain K formed by combining H and —H. By
Minkowski's theorem on linear forms,

A(U)=(s-a)(a+b).

Since A(#) = A (if), we get, by Theorem 2,

But here the sign of equality holds, since the lattice Ao of basis

Px\ (s-a, -2a-b+s), P2: (s-a, b+s)

and of determinant

d(A0)=(s-a)(a+b)

is easily seen to be .fiT-admissible, and is therefore critical.
Hence we have

THEOREM 19. Let a, b, and s satisfy (47), and let H be the isosceles
right-angled triangle with vertices at the points (48). Then

(49) A(J3r)=(«-a)(a+6).

By continuity, the formula (49) remains valid if one or more of the
signs " < " and " > " in (47) are replaced by " = ", provided only that
the case a = b = 0 is excluded. In this exceptional case there are admissible
lattices of arbitrarily small determinant.

24. The general ellipse, parallelogram, and triangle.

From the theorems in §§21-23 we easily obtain the following more
general ones, by applying a suitable affine transformation of the (x, y)-
plane. I omit the rather trivial proofs.

THEOREM 20. Let H be an ellipse of area Jrr which contains 0 as an
inner point. Let the concentric, similar, and similarly situated ellipse through
the origin be of area JOTT. Then

THEOREM 21. Let H be a parallelogram which contains 0 as an inner
point. Let the lines through 0 parallel to its sides divide H into four parallelo-
grams of areas Jx, J2, J3, J4., where the indices are chosen so that
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THEOREM 22. Lei H be a triangle which contains the origin 0 as an
inner point: Let the lines through 0 parallel to any two of its sides together
with the third side form triangles of areas Jlt J2, J3, where the notation is
such that JT ̂  J 2 < Jo. Then

For symmetrical ellipses and parallelograms, Theorems 20 and 21
reduce to classical results. Theorem 22, however, seems to be the
first lattice point property of triangles to have been stated.

The University,
Manchester, 13.


