AUTOMORPHIC STAR BODIES

By K. Mahler

ON THE ADMISSIBLE LATTICES OF

Mathematics Department, University of Manchester

(Received May 10, 1948)

Let $K: F(X) \le 1$ be an n-dimensional star body of the finite type ¹

let
$$d_F$$
 be the set of all lattices Λ satisfying
$$F(\Lambda) = 1.$$

and let S_F be the set of the determinants $d(\Lambda)$ of the elements Λ of d_F . Very little is known about this set S_F . Since all critical lattices belong

to d_F , it is clear that $\Delta(K)$ is the smallest element of S_F ; moreover, if K is bounded, then S_F consists just of all numbers not less than $\Delta(K)$. If, however, K is not bounded, then S_F may be a very complicated set, as is seen in the classical case of the region 2

It has therefore some interest to find properties of this set. One such property

ADMISSIBLE LATTICES OF AUTOMORPHIC STAR BODIES

THEOREM: If K is an automorphic star body, then S_F is a closed set. Proof: Let Λ_1 , Λ_2 , Λ_3 , ... be an infinite sequence of elements of d_F such that the finite limit

$$\delta = \lim_{r \to \infty} d\left(\Lambda_r\right)$$

exists; we must show that this limit belongs to S_F . We can find, for every index r, a point Q_r of Λ_r such that

We can find, for every index r, a point
$$Q_r$$
 of Λ_r such tha
$$1 \le F(Q_r) < 1 + \frac{1}{r} \,,$$

and an automorphism
$$\Omega_r$$
 of K such that

 $P_r = \Omega_r Q$

 $\Lambda_r^* = \Omega_r \Lambda_r$ $(r = 1, 2, 3, \cdots)$

$$\Lambda_r^* = \Omega_r \, \Lambda_r \qquad \qquad (r=1,2,3,\cdots)$$
 satisfy the relations

satisfy the relations
$$F(\Lambda_r^*) = F(\Lambda_r), \quad d(\Lambda_r^*) = d(\Lambda_r),$$

whence

 $F(\Lambda_r^*) = 1, \quad \lim_{r \to \infty} d(\Lambda_r^*) = \delta;$

they form therefore a bounded sequence. Hence we can find an infinite subsequence

 $\Lambda^{(1)} = \Lambda_{r_1}, \qquad \Lambda^{(2)} = \Lambda_{r_2}, \qquad \Lambda^{(3)} = \Lambda_{r_3}, \cdots$

which converges to a lattice, Λ say. Evidently the following statements hold:

(a) The lattices $\Lambda^{(1)}$, $\Lambda^{(2)}$, $\Lambda^{(3)}$,... converge to Λ and satisfy the relations, $F(\Lambda^{(r)}) = 1$, $\lim_{r \to \infty} d(\Lambda^{(r)}) = \delta$.

MATHEMATICS: C. KO AND F. T. CHU

(b) The points $P^{(1)} = P_{r_1}$, $P^{(2)} = P_{r_2}$, $P^{(3)} = P_{r_3}$, ... have the properties, $P^{(r)} \neq 0$, $|P^{(r)}| \leq c$, $P^{(r)}$ lies in $\Lambda^{(r)}$,

 $\lim_{r \to \infty} F(P^{(r)}) = \lim_{r \to \infty} F(Q_{n_r}) = 1.$ Hence, by Theorem 19⁻¹,

 $F(\Lambda) = 1$. and by the continuity of $d(\Lambda)$,

 $d(\Lambda) = \lim_{r \to \infty} d(\Lambda^{(r)}) = \delta,$

as was to be proved.

It would be of interest to decide whether the theorem remains true for

non-automorphic star bodies.

1. K. Mahler, "On lattice points in n-dimensional star bodies", Proc. Royal Soc.,

REFERENCES

A **187**(1946). 2. F. G. Koksma, Erg. der Math. IV 429-33.