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we apply a theorem of MINKOWSKI®) and one of myself 6), as follows:

Thecrem 3t Let K be a symmetrical convex domain, and let 1y be the
set of inscribed convex hexagons H which have their six vertices °F by,
F P, 7 P, on the boundary of K such that P, + Py — 2,. Then ANK) is
equal to a third times the lower bound of the areas of all elements H of .

Theorem 4 [f the two symmetrical convex domains k and K are polar-
reciprocal with respect to the unit circle, then

Vi VK =38
Urom these two theorems, together with Theorem 2, we obtain:

Theorem 5: Jf the two symmetrical convex domains k and K are polar-
reciprocal with respect to the unit circle, then

RS ARAE)Z3/4 .. . . . . . (O
Proof of the upper bound: Inscribe into k a hexagon h, the six vertices

“F Py, 7F Py, F Py of which Lie on the boundary of k and satisfy the equation
Py Py =D, and which is of smallest area a; hence

Nk = a/3.

Benote by H{ the hexagon polar-reciprocal to /1 with respect to the unit
circle, and by A its area. By polarity, H is circumscribed to K, and so by
Theorem 1,
NEK)y<SN{H)=A/4.
Hence by Theorem 2,
AN AK)<a/3-A4<C9-1/12 = 3/4,

as asserted,

Proof of the lower bound: By BMIiNKOWSKI's thecrem on convex do-
mains 7},

Ay = Vi, AK) = V(&4
Therefore,
AF)AK) = Vi) VK16 = 8/16 =12,

as asserted.

Both formulae (C) are best possible, since the left-hand equality sign
holds when k and K are the squares

kelxl << Jyl<i, and K@ x|4|y|=11,
and the right-hand equality sign holds when both & and K become the
unit circle.

Mathematics Department, Manchester University.
January 30, 1948,

5} See, e.g. my paper Lc. ¥}, Lemma 2 and Formula (1),

“)  See my paper "Ein Minimalproblem fiir konvexe Folygone”, Mathematica B
(Zutphen}, 7 {1938-—-1939). )

7y These two inequalities follow also from Theorem 1, since the area of k or K is

not larger than that of any circumscribed hexagon.



