On the successive minima of a bounded star domain.

Memoria di Kurt Mahler (a Manchester).

Dedicated to Max Dehn.

Sunto. - È dato nel seguente capoverso.

Let F(X) be a bounded distance function and Λ an arbitrary lattice in the plane. Let further $P,\ Q$ run over all pairs of independent points of Λ for which

$$F(P) \leq F(Q)$$
.

We call

$$\mu_{\scriptscriptstyle 4}(\Lambda) = \min F(P), \quad \mu_{\scriptscriptstyle 2}(\Lambda) = \min F(Q)$$

the two successive minima of Λ and denote by M the upper bound of $\mu_i(\Lambda)\mu_i(\Lambda)$ extended over all lattices of a fixed given determinant. I prove in this paper that there exists at least one lattice for which this upper bound is attained.

§ 1. Points and lattices.

Let (x_1, x_2) be rectangular coordinates in the Euclidean plane. We identify the point $X = (x_1, x_2)$ of these coordinates with the vector X of components x_1, x_2 and use the usual vector notation. Thus if

$$X = (x_1, x_2)$$
 and $Y = (y_1, y_2)$

are any two points, then

$$|X| = \sqrt{x_1^2 + x_2^2}$$

denotes the distance of the point X from the origin

$$O = (0, 0)$$

or the length of the vector X. Further

$$\{X, Y\} = x_1 y_2 - x_2 y_4$$

is the determinant of X and Y, and, for real u, v, uX + vY is the point

$$uX + vY = (ux_1 + vy_1, ux_2 + vy_2).$$

Assume, in particular, that X and Y are independent, i. e. that $X, Y \neq 0.$

 $d(\Lambda) = |\{X, Y\}|$ is the determinant of this lattice; the points X, Y form a basis of, or generate, the lattice.

 $d(t\Lambda) = t^2 d(\Lambda).$

P = uX + vY, where $u, v = 0, \pm 1, \pm 2, \dots$

If $t \neq 0$ is real, then $t\Lambda$ denotes the lattice of all points tP where P runs over Λ . Evidently $t\Lambda$ and $-t\Lambda$ are the same lattice, and

Then the set Λ of all points

The inequality

(C)

is a lattice, and the positive number

§ 2. Star domains.

Let

 $F(X) = F(x_1, x_2)$ be a (bounded, symmetrical) distance function, i. e. a function of X with the

following properties:

F(0) = 0: F(X) > 0 if $X \neq 0$. (A)F(tX) = |t| F(X) for all real t and for all points X.

(B)(C)F(X) is a continuous function of X (i. e. of x_1, x_2).

 $K: F(X) \leq 1$ then defines a (bounded, symmetrical) star domain K, i. e. a point set K in

the plane with the following properties:

K is bounded and closed, and contains O as an inner point. (A)Every line through O meets K in a finite line segment of which O is (B)

the centre.

The boundary C: F(X) = 1 of K is a JORDAN curve.

The more general inequality,

cK: F(X) < cwhere c > 0, defines a star domain cK similar to K; it consists of the points

cX where X runs over K. Since K is a bounded set, there exist K-admissible lattices Λ , i. e. latti-

ces which contain no inner points of K except O. Denote by

 $\Delta(K) = l. \ b. \ d(\Lambda)$

K. Mahler: On the successive minima of a bounded star domain

155

the lower bound of the determinants
$$d(\Lambda)$$
 of all K-admissible lattices Λ . Since O is an inner point of K, it is essily proved that

 $\Delta(K) > 0.$

There exists at least one critical lattice of K, i. e. a K-admissible lat-

tice Λ of determinant $d(\Lambda) = \Delta(K)$ (1). Such a critical lattice always has two

independent points on the boundary C of K (2).

 $\Delta(cK) = c^2 \Delta(K).$

 $\{P, Q\} > 0, \quad 0 < F(P) < F(Q).$

For every c > 0, cK contains at most a finite number of points of Λ . Hence

 $\mu_{\bullet}(\Lambda) = \min F(P) \text{ and } \mu_{\bullet}(\Lambda) = \min F(Q),$

extended over all pairs P, Q of $S(\Lambda)$, are both attained and are positive;

 $0 < \mu_{\bullet}(\Lambda) \leq \mu_{\circ}(\Lambda)$

 $\mu_1(t\Lambda) = +t + \mu_1(\Lambda), \quad \mu_2(t\Lambda) = +t + \mu_2(\Lambda).$

We therefore norm Λ and consider these minima from now on only for latti-

 $d(\Lambda) = \Delta(K)$.

 $M(K) = u. b. \mu(\Lambda)$

§ 3, The successive minima of a lattice.

they are called the successive minima of Λ . Evidently

by $S(\Lambda)$ the set of all pairs of independent points P, Q of Λ for which

Let $K: F(X) \leq 1$ be a fixed star domain and Λ a variable lattice; denote

the two minima

and by homogeneity,

 $\mathbf{Evidently}$

Put

ces satisfying

 $\mu(\Lambda) = \mu_1(\Lambda)\mu_2(\Lambda)$; this is a positive function of Λ . Further write

where the upper bound extends over all lattices of determinant $\Delta(K)$.

Lemma 1. - For all star domains.

M(K) > 1.

(4) See my paper, « Proc. Royal Soc. A », 187, (1946), 151-187, Theorem 8. For shortness,

(2) LP, Theorem 11.

this paper will be quoted as LP.

as Λ is admissible, no point of Λ is an inner point of K, and so

these points, we may assume that

Put

whence the assertion. Definition 1. - The lattice Λ of determinant $\Delta(K)$ is called an extreme $\mu(\Lambda) = M(K)$.

Proof. - Denote by Λ a critical lattice of K. Such a lattice has two independent points P, Q on the boundary C of K. On possibly interchanging

|P, Q| > 0, F(P) = F(Q) = 1;

 $\mu_{\bullet}(\Lambda) = \mu_{\bullet}(\Lambda) = 1$, hence $\mu(\Lambda) = 1$,

lattice of K if Our problem is to decide whether every star domain possesses at least

one extreme lattice. I mention, without proof, that in the case of a convex domain this problem is easily solved; the result is as follows; « For every convex domain,

M(K) = 1.If K is not a parallelogram, then the extreme lattices of K are identical with its critical lattices. If, however, K is a parallelogram, then there exists an

extreme lattice Λ with arbitrarily small $\mu_{\iota}(\Lambda)$ ».

§ 4. The function N(K).

defined as follows. Let P be a variable point on the boundary C of K. Since K is a bounded closed set, there exists a second point Q = Q(P) on C such that |P, Q| > 0and that

 $|\{P, X\}| \le |P, Q|$ for all points X of K.

The proof of the existence of extreme lattices uses a function N(K)

 $\varphi(P) = \{P, Q\}.$ It is easily shown that $\varphi(P)$ is a continuous function of P. Hence $\varphi(P)$ assumes its minimum on C in at least one point P_0 on C. For this minimum value, we write

 $N(K) = \min_{P \text{ on } C} \varphi(P) = \varphi(P_0).$ From the definition of $\varphi(P)$, there is then a second point Q_{\bullet} on C such that

 $N(K) = \{P_0, Q_0\}$

and that $| | P_0, X | | \leq |P_0, Q_0| = N(K)$ for all points X of K. Lemma 2. - For every star body K,

as asserted.

such that

$$N(K) \geq \Delta(K)$$
.

Proof. - Denote by Λ_0 the lattice of basis P_0 , Q_0 where P_0 , Q_0 are the points just defined. This lattice Λ_0 is K-admissible. For of the lattice points $P \neq 0$ collinear with O and P_0 , only $\neq P_0$ belong to K, while for all other lattice points P,

$$|P_{ullet}, P| \mid \geq |P_{ullet}, Q_{ullet}| = d(\Lambda_{ullet}) = N(K)$$

so that these points cannot be inner points of K. Therefore from the definition of $\Delta(K)$, $\Delta(K) \leq d(\Lambda_0) \equiv N(K)$

§ 5. Reduction of the proof.

Our aim is to show the existence of an extreme lattice of K. If

$$M(K)=1,$$

then this assertion is clearly true since every critical lattice of K is also extreme, and since there do exist critical lattices. We may therefore from now on assume that K satisfies the inequality

(1)M(K) > 1.

Next, from the definition of M(K), there exists an infinite sequence of lattices Λ_1 , Λ_2 , Λ_2 , ...

$$-\Lambda(K)$$
 for $r-1$ 2 3

 $d(\Lambda_r) = \Delta(K)$ for r = 1, 2, 3, ...and that

$$\lim_{r\to\infty}\mu(\Lambda_r)=M(K).$$

By the hypothesis (1), it is allowed to assume that

$$\mu(\Lambda_r) \geq 1$$
 for $r = 1, 2, 3, \dots$

Suppose, first, that there exists a positive constant c, such that $\mu_{\iota}(\Lambda_r) \geq c_{\iota}$ for $r = 1, 2, 3, \dots$

Then a second positive constant c_2 exists such that no point $P \neq 0$ of any lattice Λ_r satisfies

 $|P| < c_2;$ hence the sequence of lattices A, is bounded (3). We can then select an infinite subsequence

$$\Lambda_{m{r_1}}\,,\quad \Lambda_{m{r_2}}\,,\quad \Lambda_{m{r_3}}\,,$$

⁽³⁾ LP, Definition 1.

 $d(\Lambda) = \lim_{k \to \infty} d(\Lambda_{r_k}) = \Delta(K),$

and by the continuity and boundedness of
$$F(X)$$
 also
$$\mu(\Lambda) = \lim_{k \to \infty} \mu(\Lambda_{r_k}) = M(K).$$

The lattice Λ is therefore extreme and the assertion is proved. The same construction holds if the inequality

$$\mu_i(\Lambda_r) \geq c_i$$

is satisfied for any infinite sequence of indices

$$oldsymbol{r}=oldsymbol{r}',\quad oldsymbol{r}'',\quad oldsymbol{r}'',\dots$$

Hence we may from now on assume, without loss of generality, that

now on assume, without loss of gen
$$\lim_{r \to -\infty} \mu_{\mathbf{i}}(\Lambda_r) = 0 \, .$$

(2)

For every index r, select a pair of points P_r , Q_r of Λ_r satisfying both $\{P_r, Q_r\} > 0, \text{ hence } \geq d(\Lambda_r) = \Delta(K),$

and
$$\{P_r,\ Q_r\}>0,\ \ {
m hence}\ \ge d(\Lambda_r)=\Delta$$
 $F(P_r)=\mu_i(\Lambda_r),\ \ F(Q_r)=\mu_2(\Lambda_r).$

Put $P'_{n} = \mu_{n}(\Lambda_{n})^{-1}P_{n}, \quad Q'_{n} = \mu_{n}(\Lambda_{n})^{-1}Q_{n},$ so that

$$F(P'_r) = F(Q'_r) = 1.$$

Since thus all points P'_r , Q'_r are bounded, there exists an infinite se-

quence of indices $r=r_1, r_2, r_3, \dots$

$$r_{i}$$
, r_{i}

 $(r_1 < r_2 < r_3 < ...)$

$$r_1, r_2$$

$$r=r_{\scriptscriptstyle 1}, \quad r_{\scriptscriptstyle 2}$$
 and a pair of points $P', \ Q'$ such that

$$(r_{i} < r$$

at
$$P', + \mathrm{li}$$

$$p'_{r_i} =$$

(r' < r'' < r''' < ...).

 $\lim_{k \to \infty} P'_{r_k} = P', \ \lim_{k \to \infty} Q'_{r_k} = Q'.$

By the continuity of
$$F(X)$$
,
$$F(P') = F(Q') = 1.$$

(4) LP, Theorem 2.

159

Further P' and Q' are different. For

Further P' and Q' are different. For
$$\{P'_{r_k},\ Q'_{r_k}\}=\mu(\Lambda_{r_k})^{-1}\{P_{r_k},\ Q_{r_k}\}\geq rac{\Delta(K)}{\mu(\Lambda_{r_k})}\,,$$

and by the definition of M(K),

$$\mu(\Lambda_{m{r}_k}) \leq M(K),$$
 hence

 $|P'_{r_k}, Q'_{r_k}| \ge \frac{\Delta(K)}{M(K)},$

whence
$$|P',|Q'|=\lim_{k o\infty}|P'_{r_k},|Q'_{r_k}|\geq rac{\Lambda(K)}{M(K)}>0$$
 .

For all real t,

For all real t,
$$F(tP'+Q') \ge 1.$$
 For assume this assertion is false, i. e. let there be a real number τ such that

 $F(\tau P' + Q') < 1.$ Then

$$heta = F(au P' + Q')$$
 sfies

satisfies $0 < \theta < 1$ since $\tau P' + Q' \neq 0$.

But by hypothesis
$$F(hP_r+Q_r) \geq \mu_2(\Lambda_r),$$
 are also

hence also
$$F(h, \mu_t(\Lambda_r), \mu_t(\Lambda_r)) > 1$$

$$F\left(h \frac{\mu_{\iota}(\Lambda_{r})}{\mu_{2}(\Lambda_{r})} P'_{r} + Q'_{r}\right) \geq 1,$$

for
$$r = 1 \ 2 \ 3 \qquad h = 0 \ \pm 1 \ \pm 2 \ \pm 3 \dots$$

$$r = 1, 2, 3, \dots, h = 0, \pm 1, \pm 2, \pm 3, \dots$$

$$r=1,\;2,\;3,\ldots,\quad h=0,\;\pm\,1,\;\pm\,2,\;\pm\,3,\ldots\;.$$
 Further

ther
$$\lim_{N \to \infty} u(\Lambda_{N}) = 0 \quad \text{and} \quad u(\Lambda_{N}) = u(\Lambda_{N}) > 1$$

$$\lim_{r\to\infty}\mu_{_1}(\Lambda_r)=0\quad\text{and}\quad\mu_{_1}(\Lambda_r)\mu_{_2}(\Lambda_r)=\mu(\Lambda_r)\geq 1,$$

$$\lim_{r\to\infty}\mu_{_1}(\Lambda_r)=0\quad\text{and}\quad\mu_{_1}(\Lambda_r)\mu_{_2}(\Lambda_r)=\mu(\Lambda_r)\geq 1,$$

$$\lim_{r \to \infty} \varphi_1(x,r) = 0 \quad \text{and} \quad \varphi_1(x,r) = \varphi(x,r) = 1$$
and therefore

and therefore
$$\lim \frac{\mu_i(\Lambda_r)}{\Lambda_r} = 0.$$

$$\lim_{r \to \infty} \frac{\mu_{\iota}(\Lambda_r)}{\mu_{\varrho}(\Lambda_r)} = 0.$$

$$r \longrightarrow \infty \ \mu_2(\Lambda_r)$$
It is then possible to find a sequence of integers

 $h_{r_1}, h_{r_2}, h_{r_3}, \dots$

$$h_{r_1}, h_{r_2}, h_{r_3}, \dots$$

such that

 $\lim_{k\to\infty} h_{r_k} \frac{\mu_i(\Lambda_{r_k})}{\mu_i(\Lambda_{r_k})} = \tau,$

hence by the continuity of
$$F(X)$$
,

hence by the continuity of F(X),

hence by the continuity of
$$F(X)$$
,
$$\theta = F(\tau P' + Q') = \lim_{k \to \infty} F\left(h_{r_k} \frac{\mu_i(\Lambda_{r_k})}{\mu_i(\Lambda_{r_k})} P'_{r_k} + Q'_{r_k}\right) \ge 1,$$

contrary to hypothesis. The inequality

$$F(tP'+Q') \geq 1$$
 for all real t implies that

 $|P', X| \le |P', Q'|$ for all points X of K.

$$|+P', X|+ | \leq |P', Q'| ext{ for all points X o}$$
 or X can be written as

For X can be written as X = tP' + uQ' where $u = \frac{P', X}{P', Q'}$;

$$X = tI$$

if now
$$|u| > 1$$
, then

if now |u| > 1, then

 $F(X) = |u| F(\frac{t}{u}P' + Q') \ge |u| > 1,$

and so X does not belong to K.

Therefore in the notation of § 4,

whence by the definition of N(K) and by Lemma 2, Further

 $|P', Q'| = \lim_{k \to \infty} |P'_{r_k}, Q'_{r_k}| = \lim_{k \to \infty} \frac{|P_{r_k}, Q_{r_k}|}{\mu(\Lambda_{r_k})}$ and

Hence

also exists. But

value,

 $\lim_{k \to \infty} |P'_{r_k}, Q'_{r_k}|, = L \text{ say},$ $\{P_{r_i}, Q_{r_i}\} = g_{r_i}d(\Lambda_{r_i}) = g_{r_i}\Delta(K)$

 $\varphi(P') = P', Q \downarrow$

P'. $Q' > N(K) > \Delta(K)$.

 $\lim_{k \to \infty} \mu(\Lambda_{r_k}) = M(K).$

where g_{r_k} is some positive integer, and so g_{r_k} has a fixed positive integral $g_{r_k} = \frac{L}{\Lambda(K)}, = g$

say,

as soon as k is sufficiently large. Therefore $||P',||Q'|| = g \frac{\Delta(K)}{M(K)} \ge \Delta(K),$ $M(K) \leq q$.

(3)By (1), this implies that

whence

q > 2.

The points P_{r_k} and Q_{r_k} do not form a basis of Λ_{r_k} , but there exists a point R_{r_k} of Λ_{r_k} such that \hat{P}_{r_k} and R_{r_k} form a basis of this lattice; moreover, it may be assumed that $|P_{r_i}, R_{r_i}| > 0.$

The lattice point Q_{r_k} can be written as

 $Q_{r_n} = f_{r_n} P_{r_n} + g_{r_n} R_{r_n}$

where f_{r_k} is a certain integer and g_{r_k} has the same meaning as before. Conversely,

hence

when k is sufficiently large.

All points

 $R_{r_k} + h P_{r_k} = \frac{1}{a} Q_{r_k} + \left(h - \frac{f_{r_k}}{a} \right) P_{r_k} \quad (h = 0, \ \mp 1, \ \mp 2, \ldots)$

belong to Λ_{r_k} and are independent of P_{r_k} ; hence by the definition of the

whence

hence that

second minimum,

 $R_{r_k} = \frac{1}{g_{r_k}} (Q_{r_k} - f_{r_k} P_{r_k}),$

 $R_{r_k} = \frac{1}{a} Q_{r_k} - \frac{f_{r_k}}{a} P_{r_k}$

In this inequality, choose the integer $h=h_{r_k}$ as function of k such that

 $\left|h_{r_k} - \frac{f_{r_k}}{a}\right| \leq \frac{1}{2}$

 $\lim_{r_k \to \infty} \left(h_{r_k} - \frac{f_{r_k}}{a} \right) \frac{\mu_1(\Lambda_{r_k})}{\mu_2(\Lambda_{r_k})} = 0.$

 $F\left(\frac{1}{q}Q_{r_k} + \left(h - \frac{f_{r_k}}{q}\right)P_{r_k}\right) \ge \mu_2(\Lambda_{r_k}) \quad (h = 0, \pm 1, \pm 2, \ldots),$

 $F\left(\frac{1}{a}Q_{r_k}' + \left(h - \frac{f_{r_k}}{a}\right)\frac{\mu_{\iota}(\Lambda_{r_k})}{\mu_{\iota}(\Lambda_{r_k})}P_{r_k}'\right) \ge 1 \quad (h = 0, \pm 1, \pm 2, \ldots).$

Therefore, by the continuity of F(X) and by the limit definition of P' and Q',

 $F\left(\frac{1}{a}Q'\right) \geq 1$ contrary to $F\left(\frac{1}{q}, Q'\right) = \frac{1}{q}F(Q') = 1/g \le 1/2.$

theorem has been proved:

is K-admissible, and so

Put

one extreme lattice.

§ 7. A star domain K with M(K) > 1.

The assumption at the end of § 5 is therefore excluded and the following

The result just proved would lose its interest if the equation
$$M($$

The result just proved would lose its interest if the equation M(K) = 1were satisfied for all star domains K. For then every critical lattice would be extreme, and so there would have been no need to give a long proof for the

existence of extreme lattices. The following theorem excludes this possibility. THEOREM 2. - There exists a (bounded, symmetrical) star domain K satisfying M(K) > 1.

Proof: Denote by K the non-convex polygon of successive vertices

$$(1, 1), \ \left(\frac{1}{3}, \frac{2}{3}\right), \ (0, 1), \ \left(-\frac{1}{3}, \frac{2}{3}\right), \ (-1, 1),$$

$$(-1, -1), \ \left(-\frac{1}{3}, -\frac{2}{3}\right), \ (0, -1), \ \left(\frac{1}{3}, -\frac{2}{3}\right), \ (1, -1).$$

R: |x| < 1, |x| < 2/3

 $\Delta(K) > \Delta(R) = 1 \times 2/3 = 2/3.$

as a subset. Of the boundary points of R on the line $x_2 = 2/3$, all except the two points (-1/3, 2/3) and (1/3, 2/3) are inner points of K, and these two points have a distance less than unity; hence no critical lattice of R

 $\delta = + V\Delta(K)$.

and denote by Λ the lattice of basis

 $P = (\delta, 0), \quad Q = \left(\frac{1}{2}\delta, \delta\right)$

and determinant $d(\Lambda) \equiv \delta^2 \equiv \Delta(K)$. Evidently

$$\mu_{_1}(\Lambda) = \delta, \quad \mu_{_2}(\Lambda) = rac{3}{2} \, \delta,$$

the first minimum being attained at P and the second one at Q. Therefore $\mu(\Lambda) = \delta \times \frac{3}{2} \delta = \frac{3}{2} \Delta(K) > 1,$

whence $M(K) \ge \mu(\Lambda) > 1$, as asserted.

In a further paper, I hope to extend the results of this paper to more dimensions.