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sunto. - E dato nel sequente capoverso.

Let F(X) be a bounded distance function and A an arbitrary lattice in
the plane. Let further P, @ run over all pairs of independent points of A
for which
F(P)< F(Q).
We call
p’l(A’ = min F(P)a P‘z(A) = min F(Q}

the two successive minima of A and denote by M the upper bound of p (A)w,(A)
extended over all lattices of a fixed given determinant. I prove in this paper
that there exists at least one laitice for which this upper bound is altained.

§ 1. Points and lattices.

Let (x,, x,) be rectangular coordinates in the Euclidean plane. We iden-
tity the point X = (x,, x,) of these coordinates with the vector X of compo-
nents x,, x, and use the usual vector notation. Thus if

X =, 9(),2) and Y ={(y,, ¥,

are any two points, then
X[ = Ve v
denotes the distance of the point X from the origin
0=1(0, 0)
or the length of the vector X. Further
(X, Y=oy, —x,y,

is the determinant of X and Y, and, for real u, v, uX -+ vY is the point

uX + vY = (ux, + vy, , ux, + vY,).
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Assume, in particular, that X and Y are independent. i. e. that
1 X, Y H=0.
Then the set A of all points
P=uX +vY. where u,v=0, =1, =2,...
is a lattice, and the positive number
dAd) =1 X, Y|

is the deferminant of this lattice ; the points X, Y form a basis of, or gene-
rate, the lattice.

It t==0 is real, then fA denotes the lattice of all points ¢{P where P runs
over A. Evidently tA and — fA are the same laftice, and

A(tA) = td(A).

§ 2. Star domains.

Let
F(X)= F(wn 2,)

be a (bounded, symmetrical) distance function, i. e. a function of X with the
following properties :

(A) , F(O)=0: F(X)>0it X+ 0.
(D) FitX)=|t| I"(X) for all real £ and for all points X.
(C) F(X) is a continuous function of X (i. e. of x , x,).

The inequality

K: FX)<1
then defines a (bounded, symmetrical) star domain K, i. e. a point set K in
the plane with the following properties:

(4) K is bounded and closed, and contains O as an inner point.

(B) Every line through O meets K in a finite line segment of which O is
the centre. ‘

(C) The boundary C: F(X)=1 of K is a JORDAN curve.

The more general inequality,
cK: FiX)<cg,

where ¢ > 0, defines a star domain ¢K similar to K ; it consists of the points
¢X where X runs over K.

Since K is a bounded set, there exist K-admissible lattices A, i. e. latti-
ces which contain no inner points of K except O. Denote by

AK) = 1. b. d(A)
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the lower bound of the determinants d(A) of all K-admissible lattices A.
Since O is an inner point of K, it is essily proved that

A(K) > 0.

There exists at least one critical lattice of K, i. e. a K-admissible lat-
tice A of determinant d(A) = A(K) (*). Such a critical lattice always has two
independent points on the boundary C of K (*).

~ Evidently
AlcK) = ¢*A(K).

§ 3, The successive minima of a lattice.

Let K: F(X)<C1 be a fixed star domain and A a variable lattiee ; denote
by S(A) the set of all pairs of independent points P, @ of A for which

\P, Q>0. 0<F(P)=F(0)

For every ¢ > 0, cK contains at most a finite number of points of A. Hence
the two minima
1 (A) = min F(P) and p,(A) = min F(Q),

extended over all pairs P, @ of S(A), are both attained and are positive;
they are called the successive minima of A. Evidently

0 << (A) < (A,
and by homogeneity,

w(EA) = 18] (D), we(tA) = | £ ] p (A)

We therefore norm A and consider these minima from now on only for latti-
ces satisfying

Put
MA) = 1 (A)py(A)

this is a positive function of A. Further write
M(K) =wu. b. nA)
where the upper bound extends over all lattices of determinant A(K).

LeMMA 1. = For all star domains.

M(K)= 1.
(!) See my paper, « Proc. Royal Soc. A », 187, {1946), 151-187, Theorem 8. For shortness,
this paper will be quoted as LP.
(*y LP, Theorem 11.
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Proof. - Denote by A a critical lattice of K. Such a lattice has two
independent points P, @ on the boundary C of K. On possibly interchanging
these points, we may assume that

}P, Q3>O, F(Pb:F(Q}:l;
as A is admissible, no point of A is an inner point of K, and so
w Ay =p,(A) =1, hence pA)=1,

whence the assertion.
DEFINITION 1. - The lattice A of determinant A(K) s called an extreme
lattice of K if

Our problem is to decide whether every star domain possesses at least
one extreme lattice. I mention, without proof, that in the case of a convex
domain this problem is easily solved; the result is as follows:

« For every convex domain,

M(K)= 1.

If K is not a parallelogram, then the extreme lattices of K are identical with
its critical lattices. If, however, K is a parallelogram, then there exists an
extreme lattice A with arbitrarily small p,(A) >.

§ 4. The fanction N(X).

The proof of the existence of extreme lattices uses a function N(K)
defined as follows.

Let P be a variable point on the boundary C of K. Since K is a boun-
ded closed set, there exists a second point @ =@(P) on C such that

‘P, Q1 >0
and that
|{P, X} | <! P, Qi for all points X of K.

Put
o(P)=1P, Q1.

It is easily shown that ¢(P) is a continuous function of P. Hence ¢(P) assu.
mes its minimum on C in at least one point P, on C. For this minimum
value, we write

N(K) = min ¢(P) = ¢(P,).

PonC
From the definition of ¢(P), there is then a second point @, on C such that
N(K) - ; PO) QO }
and that
|/ P, X! | <!|P,, Q1=DN(K) for all points X of K.
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LemMa 2. - For every star body K,
N(K) = A(K).

Proof. - Denote by A, the lattice of basis P,, @, where P,, @, are the
points just defined. This lattice A, is K-admissible. For of the lattice points
P == 0 collinear with O and P,, only == P, belong to K, while for all other
lattice points P,

i1 Py, PU| =P, @t =4d(A,) = N(K)
so that these points cannot be énner points of K. Therefore from the defini-
tion of A(K),

A(K) < d(A,) = N(K),
as asserted.

§ 5. Reduction of the proof.

Our aim is to show the existence of an extreme lattice of K. If
M(K) =1,
then this assertion is clearly true since every critical lattice of K is also

extreme, and since there do exist critical lattices. We may therefore from
now on assume that K satisfies the inequality

(1) M(K) > 1.

Next, from the definition of M(K), there exists an infinite sequence of

lattices
A, A, A,
such that
diA,) =A(K) for r=1, 2, 3,..
and that
lim p(A,) = M(K).

r—co
By the hypothesis (1), it is allowed to assume that
pA,) =1 for r=1, 2, 3,....
Suppose, first, that there exists a positive constant ¢, such that
n(A)=c¢c, for r=1, 2 3 ..

Then a second positive constant ¢, exists such that no point P <= O of any
lattice A,. satisfies
[P <e;

hence the sequence of lattices A, is bounded (°). We can then select an infi-
nite subsequence

(?) LP, Detinition 1.
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converging to a limiting lattice, A say (*). Evidently

d(A) = lim d(A, ) = A (K),

k—

and by the continuity and boundedness of F(X) also -
pA) = lim A, )= M(K).

k— 0

The lattice A is therefore extreme and the assertion is proved.
The same construction holds if the inequality

m(Ay) =c,
is satisfied for any infinite sequence of indices
r=vr, ', ¢, .. <<y <)
Hence we may from now on assume, without loss of generality, that
(2) lim p,(A,) =0.

r —» Q0

§ 6. Conclusion of the proof.

For every index r, select a pair of points P,, @, of A, satisfying both

{P,, @.1>0, hence =d(A,)=AK),

and
F(P1) - P*l(Ar)’ F(Q,) = l"‘z(Ar)—
Put
P, = p.‘(A,.)—iP,,, Q.= P’z(Ar)_iQr;
so that

F(P',)=F(Q,) =1.

Since thus all points P’,., @', are bounded, there exists an infinite se-

quence of indices
r=r,, Ty, ¥5,.. (r, <r, <r, <..)

and a pair of points P, ¢ such that

Jn P =P i g, =
By the continuity of F(X), H ,
F(P)= F(@)=1.

() LP, Theorem 2.
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Further P' and Q are different. For

! / — —1 A(K)
%P’.L‘, Q’rk}'—p’(Ark) %Prk’ Qrk§2P(Ark),
and by the definition of M(K),
w(A,,) < M(K),
hence
, , A(K)
Pl @l = gy
whence
’ 4 J— 3 i ’ ’ A(K} N
;P’ Q ! __kl_l_]}looip"k’ Qrk%2M(I(}/O

For all real ft,
F(P + Q)=1.

For assume this assertion is false, i. e. let there he a real number t such

that
B FrP + Q) < 1.
Then
0= F(P + Q)
satisfies

0<0<1
since P + @ == 0.
But by hypothesis
F(hP, + Q) = 1,(A,),
hence also

F(h % P, + @) =1,

for

Further
lim (A =0 and (A m(A,) = wd,) =1,

and therefore
oAy 0.

lim =
re—e oo oAy

It is then possible to find a sequence of integers
Bpys Py Ty o
such that
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hence by the continuity of F(X),

§ = FxP + @) = lim F(h M) b g )>1
— kY ) - k___’m rk EL%(A"/{) o "k 1’,[ = Al
contrary to hypothesis.
The inequality
F(tP' + @) =1 for all real ¢
implies that
| /P, X | <P, Q1 for all points X of K.
For X can be written as ’
— P+ uQ _ P X
X =tP' 4+ u@) where u= Vaak

if now |« | >> 1, then
FX)=|u| Bl P+ @)= ul >0,

and so X does not belong to K.
Therefore in the notation of § 4,

PP) =1, QL
whence by the definition of N{K) and by Lemma 2,
P, @1 = NK) = AK).

Further
P, Q= lim P, , @, =lim Py O
t ] § —k.*oo' ” 7y ——k—_’oo }L(A,.])
and
lim p.(Ar]) = M(K).
ke — 00 g
Hence

lim gP’,.k, Q’,.k t, = L say,
k—s 00
also exists. But

V Py @t =gr dlAy) = 9 A(K)

where g, is some positive integer, and so g, has a fixed positive integral
value,

L

gr, = ‘Ama =9 say,

as soon as k is sufficiently large. Therefore

P\ Q=g ) = MK
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whence
(3) M(K)<g.
By (1), this implies that

g=2.

The points P"k and Q,.k do not form a basis of A,.k, but there exists a
point R,‘k of A,.k such that I’,.k and Rfk form a basis of this lattice ; moreover,
it may be assumed that

| P R,.kg>0.

1'k’

The lattice point @, can be written as
Q’h = f"kP’“k + g"lcR"k

where f, is a cerfain integer and gr, has the same meaning as before.
Conversely,

1
R,,k = 5— (Q,.k —_— f,ka,.k),
-

hence

Qr _&P

Rr = P g ”,

1
F g
when k£ is sufficiently large.

All points

R, +hP, = ; 0+ (h _ %’“)P,.k h=0, 1, £2 .

belong to A"k and are independent of P, ; hence by the definition of the
second minimum,

1 fr , '
F<§ Q, + (h -—j)l’rk) = (A ) (=0, 1, 2,..),
whence

1 Fr\(As)
F(- +( --Jf)-~—k P’,.>21 h=0, %1, +2,.)
gQ 4 g/ wAy) TR ( )

In this inequality, choose the integer h=h, as function of k£ such that

‘ fr 1
=S
hence that
fr p,,(A,,)
lim (h —_k>_ ¥ —0.
oo\ kg ) po(Ay)
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Therefore, by the continuity of F(X) and by the limit definition of P" and ¢,
1
(o)
g
contrary to

F(:: Q/) Z;F‘ Q)=1l/g<1/2.

The assumption at the end of § b is therefore excluded and the following
theorem has been proved:

THEOREM 1: Every (bounded, symmetrical) starr domain possesses at least
one extreme lattice.

§ 7. A star domain K with M (K)> 1.

The result just proved would lose its interest if the equation M(K)=1
were satisfied for all star domains K. For then every critical lattice would
be extreme, and so there would have been no need to give a long proof for the
existence of extreme lattices. The following theorem excludes this possibility.

THEOREM 2. - There exists a (bounded, symmetrical) star domain K satis-
fying M{K) > 1.

Proof : Denote by K the non-convex polygon of successive vertices

1 2 1 2
L0 (5o ) 0000 (=50 5) =1,
v 1 2 1 2 :
(— 1’ "‘1)7 (—37 "":9))7 (Oa 1), (3, _3)> (17 _1’
This polygon is a star domain and contains the rectangle

B: |a | <1, |x]<23

as a subset. Of the boundary points of B on the line x, = 2/3, all except
the two points (— 1/3, 2/3) and (1/3, 2/3) are énner points of K, and these
two points have a distance less than unity; hence no critical lattice of R
is K-admissible, and so

A(K) > MR) = 1< 2/3 = 2/3.

Put
& = + VA(K).
and denote by A the lattice of basis
1
P=3 0), Q:(§5 5)

and determinant
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Evidently
,

the first minimum being attained at P and the second one at @. Therefore

3. 3
58 =, AK) > 1,

wA) =8
whence
M(K) = p(A) =~ 1,
as asserted.
In a further paper, I hope to extend the results of this paper to more

dimensions.




