On the Arithmetic on Algebraic Curves

K. Mahler

Let P_1 , P_2 ,..., P_t be a finite set of prime numbers, and let \sum be the set of all rational numbers of the form P_1 , P_2 ... P_t

where the a's run over all integers, positive, negative, or zero. Let further

ero. Let further $f(x,y) = \sum_{h=0}^{m} \sum_{k=0}^{n} a_{h,k} x^{h,k}$

where $F = \sum_{h=0}^{m} \sum_{k=0}^{n} a_{h,k} > 0$, be a non-constant polynomial with integral coefficients,

irreducible over the rational field. The algebraic curve \hat{C}

defined by f(x,y) = 0 may be reducible, however.

Theorem: If there exists an infinite set S of points

(x,y) on C for which both x and y belong to , then f(x,y) is the sum of exactly two terms.

Proof: For every rational number x = a/b, where the integers a,b are relatively prime, write *x = max(|a|,|b|).

It is easily proved that

(1): *y≤F(*x)^m, *x≤F(*y)ⁿ

for every element (x,y) of S.

If min (*x, *y) is bounded in S, then f(x,y) is of

If min (*x, *y) is bounded in S, then f(x,y) is of the form ax + b or ay + b, where a and b are integers different from zero. We exclude this case; then both *x and *y tend to the inity when (x,y) runs over S^7).

7) Here and later, it may be necessary to replace S by a suitable infinite subsequence; but, for shortness, we shall not mention this each time.

On, if necessary, replacing x by 1/x, or interchanging x and y, or doing both, we may assume that

(2): 1/|x| is bounded for the elements (x,y) of S.

(2): 1/|x| is bounded for the elements (x,y) of S. CASE A: $*x \le |x|^2$ for the elements of S; hence |x| tends

The points (x,y) of S lie therefore on an infinite branch of C defined by a convergent series

(3): $y = ax^{n/q} + a_7x^{(n-n)/q} + a_2x^{(n-2)/q} + ...;$

(3): $y = ax^{n/q} + a_7x^{n/q} + a_2x^{n/q} + a_2x^{n/q$

and a $\neq 0$, a₁, a₂,... are real algebraic numbers.

If $a_1 = a_2 = \dots = 0$, then C is the curve g(x,y) $= y^q - a^q x^p = 0$, a^q is a rational number, and f(x,y) has the asserted form since g(x,y) is irreducible. Let this case be

excluded.

Denote by a_r , where $r \ge 1$, the first of the numbers a_1 , a_2

Denote by a_r , where $r \ge 1$, the first of the numbers a_7 , a which does not vanish; further put $z = x^{-p}y^q, A = a^q,$

so that

 $\lim z = A \neq 0$ when (x,y) runs over S. Also z belongs to \sum , and by (1) and (5)

 $*z \le (*x)^p (*y)^q \le c (*x)^{p + mq};$

independent of (x,y). By (3) and the definition of r, z may be written as a convergent series $z = A + A_{yx} - \sqrt{q} + A_{y+1} x^{-(y+1)/q} + \dots,$

here c_1 , and similarly c_2 , c_3 ,..., denote positive numbers

where, in particular, $A \neq 0$ and $A_r \neq 0$. Hence, for (x,y) in S, $0<|z=A|<c_0|x|-v/q$ -> 0. Therefore, by the hypothesis $x \le |x|^2$ and by (6), $0 < |z-\Lambda| < c_2(*x)^{-1/2q} < c_2(*z)^{-1/2q}$ (8):

where
$$\gamma = \frac{1}{2q(p+mq)}$$
, contrary to a well-known consequence of the Thue-Siegel theorem²).

2) If $A \neq 0$ is an algebraic and ϵ a positive number, then $0 < |z=A| < (*z)^{-\epsilon}$ for at most a finite number of elements z of ϵ . See my paper, Proc. Kon. Akad. Amsterdam, 39 (A936),

633-640, 729-737, Satz 3. CASE B: $*x>|x|^2$, so that |x| is possibly bounded.

Write x = a/b where (a,b) = 1, $ab \neq 0$. We have, either

*x = |b|, or $*x = |a| > a^2/b^2$, whence $b^2 > |a|$, $|b| > |a|^{1/2}$

= $(*x)^{1/2}$. Hence in either case, $|b| \ge (*x)^{1/2}$. On factoring b, let PS by the greatest power of a prime

dividing b; therefore

 $P^{s} > |b|^{1/t}$

for all elements of S. Denote by |u|p the P-adic value of the arbitrary P-adic

from the definition of \sum . We may assume P is the same prime

number u, where the P-adic value is normed by the condition that $P |P|_{\bar{p}} = 1$. Then $|x|_{P} = P^{s} \ge |b|^{1/t} \ge (*x)^{1/2t}$

for the elements (x,y) of S. Hence x, considered as a P-adic number, tends to infinity as (x,y) runs over S. This enables us to proceed just as in Case A, except that we are now dealing with

P-adic numbers and values. Again the points (x,y) of S lie on an infinite branch of C defined by a series (3), except that this series converges

now in the P-adic sense and that its coefficients a \neq 0, a, , a, ... are P-adic algebraic numbers; let (4) still be

satisfied. We exclude once more the case that $a_7 = a_9 = \dots = 0$, when the assertion is certainly true, and denote again by a_{p} ,

where $r\geq 1$, the first non-vanishing coefficient a_1 , a_2 Define z and A by (5) so that now $\lim z = A \neq 0$

in the P-adic sense as (x,y) runs over S. The inequality (6) remains true, and z may be written in the form (7) where $A \neq 0$

and $A_r \neq 0$, and where the convergence is in the P-adic sense.

Therefore now, for (x,y) in S,

 $0 < |z-A|_p < c |x|_p - \sqrt{q} \rightarrow 0.$

By (6) and (9), this implies that $0<|z-A|_{p}< c_{4}(*x)^{-r/2qt} 5< c_{5}(*z)^{-S}$, where

 $S = \frac{\sum_{q \neq (A + mq)} .}{2q + mq}$

This inequality, however, contradicts the P-adic analogue to the theorem quoted in the footnote 2) 3).

 3) The proof in 2) can be extended to the P-adic case by using the result of my paper, Math. Annalen, 107 (1935), 691 -730,

Satz 1.

By way of example, take f(x,y) = x + y - 1. Then the theorem implies that if u, v are integers different from zero which are relatively prime and for which $x^2 + y^2$ tends to

infinity, then the greatest prime factor of uv(u + v) also tends to infinity. In a later paper, I hope to extend the result of this

note to arbitrary finite algebraic fields.