ON A QUESTION IN ELEMENTARY GEOMETRY

by K. Mahler (Manchester)

Through any two points 4 and B in the plane pass an infinity
of different circles. Each such circle I',, of radius 7 say, is divided
by A and B into two separate arcs. Denote
by v, the length of the smaller one of these
two arcs; this length has a meaning as long
as 2r = Z.E; here AB denotes the distance
L of the two points A, B, i.e. the length of the

line segment bounded by them.
It is nearly obvious from the figure that
X y, decreases when 7 increases, and this can
I, must be I, also easily be proved by means of calculus or

' equivalent methods.

I give in this note an elementary proof of this property of y,,
using only the ideas and methods of Euclid’s “Elements”. For
clearness’s sake, the proof is split into a number of lemmas. Every-
where, AB = y, denotes the length of the smaller of the two arcs
of a circle bounded by 4 and B; if several such arcs pass through
A4 andB, then the context will make it clear which of them is being
considered.

B

Lemma 1: Let OAB be a circular sector of radius r = 04

—

and bounded by the circular arc AB of length s = AB. Then
OAB is of area 1/, rs = 1/, 04 x AB.

This is a well-known theorem in Euclid’s
Elements, and is proved there by the
exhaustion method, i.e. by means of a
limiting process. This lemma enables us
to carry through the proof of the mono-
tonity of y, without using any further o r A
non-finite processes.

Lemma 2: Let OAB be a circular sector as in Lemma 1
such that the angle < AOB is acute. Let D lie on OB, and let

CD be perpendicular to OC. Then CD < AB.
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Proof: Denote by E the point on 04 for which EB is perpen-
dicular to OE. The triangle OCD is contained in, and similar to,
the triangle OEB, and possibly coincides with it; therefore

(@) CD <EB

Next the triangle OAB is a proper subset of the circular sector
0AB, hence is of smaller area, so that by Lemma 1,

(b) %m x EB <1/2O_fI x AB, whence EB < AB
The assertion is immediate from (a) and (b).
o B Lemma 3: Let OAB be a circular

sector as in Lemma 1 such that the angle
< AOB is acute. Let C lie on the line
through 04 be=yond 4, and let D lie on the

(0] C E A line OB beyond B and be such that CD is
perpendicular to OC. Then
CD > AB.

Proof: Denote by E the point on OB beyond B for which AE
is perpendicular to OA. The triangle

OCD contains, and is similar to the B D
triangle OAE, and possibly coincides B

with it; therefore

(a) CD = AE

Next the circular sector OAB is a o A C

proper subset of the triangle OAE,
hence is of smaller area. Therefore by Lemma 1,

(b) 1,04 X AB < 1,04 x AE, whence AB < AE.
The assertion follows from (a) and (b).

Lemma 4: Let O4AB be a circular sector as in Lemma 1, such
that the angle < AOB is less than 180°. Let C lie on 04 beyond
A, and D on OB beyond B, and let the line segment CD meet

the circular arc 4 B in at most one point.

Then CD > AB.

Proof: Denote by E the point on the
line through CD for which OF is per-
pendicular to CD. If E coincides with
either C or D, then the assertion has
already been proved in Lemma 3.




Assume next that E lies between C and D, hence that the line
OE lies in the angle < AOB. Then OE meets the arc 4B in a
unique point, I say. By applying Lemma 3 twice, we find that
AF < CE, FB < ED,
and the assertion follows on adding these inequalities.
There remains the case
D that the line OE falls out-
side the angle << AO0B. To
G fix the ideas, let us assume
B that E lies on CD beyond
C. Then the angle < OCD
is greater than a right one,

and so there is a point G
on OD such that CG is

C
© A perpendicular to OC; hence
by Lemma 3,
E (a) AB < CG.

The triangle OCG has, by construction, a right angle at C; hence
4 CGO is acute, and so <f CGD is the largest angle of the triangle
CDG. Then the side opposite this angle is the largest of the triangle:

(b) CG < CD,
and the assertion follows from (a) and (b).

Lemma 5 Let AB be a circular arc with centre at O. Let
C be a point on this arc, and let BD B
be the tangent at B of this arc. Then
the angle <¢ CBD is half the angle

< COB.
Proof: Evidently o)
(@) < CBO =90°—1/,<1 COB, and
(b) <1 CBO =90°— 4 CBD, b
A whence the assertion.
E Lemma 6: Let AB and AC be two
circular arcs of centres O and Q, respect-
/‘ g ively, such that OQBC lie on one line in
/ D just this order. Assume that < AOB and
o B C < AQB are at most 180°. Let E and

D and E at the top must E’ be two points on the arc AC such
be D’ and E’. that E is nearer to C, and E’ is nearer
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to A; let further the radii EQ and E’Q intersect the arc AB
at D and D', respectively. Then

DE > D'E".
Proof: Since L
QE = QE" = @4,
it suffices to show that
(@) QD < QD'

Draw the lines OD, OD’ and DD’. The triangle ODD’ has the
two equal sides OD = 0D’ = 04, so that

) < ODD" =<« OD'D.
On the other hand,
(c) <1 QDD >4 0DD" and 4 QD'D < < OD'D.

From (b) and (c),
<4 ODD' > < QD'D,

and (a) follows immediately since in the triangle QDD’ the side
QD lies opposite a larger angle than the side QD.

After these preparations, we can now start with the proof that
y. decreases when 7 increases.

N
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We consider two circular arcs ACB and ADB through A4 and B,
of radius 04 = OB, and Q4 = @B, respectively, where
04 > QA.




We assume that both arcs are at most semi-circles, and that both
lie on the opposite side of the line through 4 B on which are O and
Q. For shortness, denote by o the angle 4 AQB, and by ¢ the
angle <4 QBO. Then ¢ is also the angle <§ RBS of the tangents
BR of the arc ACB and BS of the arc ADB
at the point B common to both arcs; for B=A,,
the radius and the tangent through the
same point of a circle are perpendicular.
By Archimedes’s Axiom (which is both
stated and used in Euclid’s Elements),
there exists a positive integer # such that

(@) 2n+lg > a.
Divide the angle a = <¢ AQB into 2" equal
parts; this can be done by repeatedly halving
the angle. The radii belonging to the so
obtained fractions of a meet the arc ADB
at the equidistant points 4, =4, 44, 4,,...,
Ayn = B. A,, must be A,
Next form the line segments
AA, = A4y, 414, A4, ...\ AynyAyn = Ayny B,
for each such line segment

A AA,, (v =01,..., 1)
Q'\lﬁ‘dv denote by M, its centre:
AM, = M4,
The line QM, is then perpendicular to the line 4,4,.;. Since
further all 2” triangles

04,4, (v =0,1,...,2"1)
are congruent, the 2” points

My, M, M, ..., My,

have all the same distance, g say, from Q.

Denote now by [ the circular arc through MM, .. .M, of
centre Q and radius p; its endpoints are M, and M,»_,. Denote
further by A the curve consisting of the two line segments AM,
and M,»_,B and of the arc I'. Since for » =0, 1, ..., 2”1,
the midpoint M, is always that point on 4,4+, which is nearest
to Q, it is clear that the broken line

AgA A, . . AgnAgr
lies everywhere between the curve A and the circular arc ADB.
We show now that, on the other hand, A is separated from Q,



and so also from O, by the circular arc ACB which has the same
endpoints 4 and B.
Firstly, the angle <1 4,04, is, by construction and by (a),

equal to 2—aﬁ< 2¢. By Lemma 5, this implies that the anglle between
the line 4 A4, and the tangent to ADB at A is equal to 5 2% < @.

Hence the line segment A A, lies between the two tangents at A
of the circular arcs ACB and ADB, hence lies outside the circle

ACB, except for the single point 4. By just the same reasoning,
the line segment A,n_,B lies outside the circular arc 4ACB, except
for the single point B.

Secondly, let M be an arbitrary point on the circular arc I'.
"The radius QM meets the arc ADB in a unique point, M* say,
and the arc ACB in a unique point, N say. Since, by hypothesis,



the arc ADB is separated from @ by the arc ACB, the three col-
linear points QNM?* follow one another in just this order. By

Lemma 6, NM* is smallest when M lies at one of the two end-
points M, and M,n_; of I'. Further, from the construction, the

distance MM* is independent of the special choice of M, namely
equal to the difference:

Q4 —o
of the radii of the two concentric arcs ADB and I'. Hence also
MN is smallest when M lies at either endpoint M, or Myn_y of T,
Since, as we saw before, both M, and M,~_; are separated from
Q by the arc ACB, the same must then be true for all points M
on I'.
We have proved, in this way, that the broken line

Agdi Ay . . Ay

lies everywhere between the two arcs ACB and A DB, and has the
same endpoints A and B. The asserted inequality

ACB < ADB
is now obtained as follows:
Denote, for v = 0, 1, ..., 2"-1, by M*, the point on the arc

ADB collinear with Q and M,. Then the line segment A4,4,., is
perpendicular to the line QM,M*,. Therefore, by Lemma 2,

AM, < AM*, M, A, < M* A,y (n=0,1,...,2%1),

whence

A A < A4, (v =0,1,...,2"1).
On adding now over all values of », we find that the broken line
AyA44,. . Ayn
is shorter than the circular arc 4ADB.

Next denote, for v = 0,1, ..., 2%, by P, the point where the
radius O4, meets the circular arc ACB; in particular, Py = A and
Py, = B. By Lemma 4, we have

PPy < A A0, (»=0,1,...,2%1)

On adding again over all values of », we find this time that the
broken line



Agdy A, . . Ay

is greater than the arc ACB

On combining these two inequalities for the broken line, the
assertion follows at once.

It would be of interest to simplify this proof.
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