ON THE LATTICE DETERMINANTS OF TWO PARTICULAR POINT SETS

K. Mahler*.

[Extracted from the Journal of the London Mathematical Society, Vol. 28, 1953.]

It is well known that the star domain

 $K\colon \ |xy| \leqslant 1$

^{*} Received 14 May, 1952; read 15 May, 1952.

230

ray domain

generally that of its subset

it is obvious that

so that

as asserted.

Then we shall prove that

show that $d(\Lambda) \geqslant \sqrt{5}$. In every rectangle

where t is an arbitrary non-negative constant.

 R_t : $|xy| \leq 1$, $x \geq t$,

 $K \supset R \supset R_{\iota}$

 $\Delta(R_t) \leqslant \Delta(R) \leqslant \sqrt{5}$.

K. Mahler

 $R_0: 0 \leq xy \leq 1, x \geq 0, y \geq 0,$

forming the part of K in the first quadrant, B. Segre [4] and I [1] have shown that $\Delta(R_0) = 1$. In this note I determine the determinant of the

 $R: |xy| \leq 1, \quad x \geqslant 0,$

consisting of the intersection of K with the half-plane $x \ge 0$, and more

has the determinant $\Delta(K) = \sqrt{5}$. Further, for the ray domain

 $\Delta(R_t) = \Delta(R) = \sqrt{5}$.

 $P_{-}: |x| \leqslant t, |y| \leqslant \tau,$ A has at most finitely many points. Hence a τ with $0 < \tau \leqslant t^{-1}$ can be chosen such that O=(0,0) is the only lattice point contained in P_{τ} . But

 K_{τ} : $|xy| \leqslant 1$, $|y| \leqslant \tau$. Further $\Delta(K_{\tau}) = \sqrt{5}$, as follows at once from Theorem 10 of my paper [2]

 $d(\Lambda) \geqslant \Delta(K_{\tau}) = \sqrt{5}$

Let now t > 0; denote by S_t the set of all points (x, y) for which

 $\Delta(S_t) = \frac{3+\sqrt{5}}{2}.$

but filling an arbitrarily large portion of this halfplane $x \ge 0$.

Although the set R_t covers an arbitrarily small part of the halfplane $x \ge 0$, its determinant has just been shown to be positive and constant. I now give an example of a ray set, also of positive constant determinant,

either $0 \leqslant x \leqslant t$, or x > t and $|xy| \leqslant 1$.

Surprisingly enough, it can be proved that here the equality signs hold,

For let Λ be an arbitrary R_t -admissible lattice; it evidently suffices to

then Λ is clearly an admissible lattice of the star domain

on putting $F(X) = \max(|xy|^{\frac{1}{2}}, \tau^{-1}|y|)$. Therefore

For let Λ be any S_t -admissible lattice. This lattice contains points different from the origin in the parallel strip |x| < t, because this strip is convex, symmetric in the origin, and of infinite area. Since the lattice is S_t -admissible, such points necessarily lie on the y-axis. There exists then also a point (0, a) of Λ of smallest positive a, and this point is therefore primitive. Next we can select a second point (b, c) of Λ such that (0, a)and (b, c) together form a basis of Λ ; the lattice consists thus of the points

(bv, au+cv)

(u, v = 0, +1, +2, ...).

Since Λ

There is no loss of generality in assuming that b is also positive. is S_t -admissible, this means that

 $b \gg t$ and that further

 $|bv(au+cv)| \ge 1$ if $u = 0, \pm 1, \pm 2, ...; v = 1, 2, 3, ...$

 $\left| \frac{u}{v} - \xi \right| \geqslant \frac{1}{d(\Lambda) v^2}$ if $u = 0, \pm 1, \pm 2, ...; v = 1, 2, 3,$

Put
$$\xi = -rac{c}{a}.$$
 Since $d(\Lambda) = ab$, then

Now a theorem of A. V. Prasad [3] states that for every real
$$\xi$$
, integers $u,\ v\geqslant 1$ can always be chosen such that

$$\left|rac{u}{v}-\xi
ight|\leqslant rac{2}{(3+\sqrt{5})\,v^2}.$$

The last inequality implies then that

 $d(\Lambda) \geqslant \frac{3+\sqrt{5}}{2}$,

and therefore

$$\Delta(S_l) \geqslant \frac{3+\sqrt{5}}{2}.$$

Here the sign of equality holds. For select any
$$b \geqslant t$$
 and put $a = \frac{3+\sqrt{5}}{2h}, \quad c = \frac{1-\sqrt{5}}{2}a,$

 $d(\Lambda) = ab = \frac{3+\sqrt{5}}{2}, \quad \xi = -\frac{c}{a} = \frac{\sqrt{5}-1}{2}.$ so that

It is obvious that
$$\Lambda$$
 contains no points (x, y) for which

0 < x < t.

has no solutions in integers $u, v \ge 1$ if

$$C < \frac{2}{3+\sqrt{5}}$$

LATTICE DETERMINANTS OF TWO PARTICULAR POINT SETS.

 $\frac{u}{v} - \frac{\sqrt{5-1}}{2} \leqslant \frac{C}{v^2}$

Further, by Prasad's theorem, the inequality

This implies that there are no such integers for which
$$|xy| = |bv(au+cv)| < 1$$
,

and hence that Λ is S_t -admissible. This concludes the proof.

1. K. Mahler, Duke Math. J., 12 (1945), 367-371.

- 2. —— Proc. Royal Soc. A, 187 (1946), 151–187.
- 3. A. V. Prasad, Journal London Math. Soc., 23 (1948), 169-171. 4. B. Segre, Duke Math. J., 12 (1945), 337-365.

References.

The University, Manchester, 13.

232