THE p-TH COMPOUND OF A SPHERE

By KURT MAHLER
[Received 30 June 1954.—Read 25 November 1954]

Ler G,: | X| < 1 be the unit sphere in R,, and let I'(®) = [, |? be its pth
compound in Ry, where N = (7&). By definition, I'{? is the convex hull of
P

the set X7 = (G,)® which consists of all compound points
E=[XDX®,_ . XP] where XO, X® . XPed,.
Our aim is to give more explicit definitions of X(?’ and T'(?).

1. TuroreEM 1. (P is the intersection of the N-dimensional unit sphere
Gy |B| < 1 with the Grassmann manifold (n, p).

Proof. Let E # O be an arbitrary point of X{?»). There exist then p
linearly independent points Y®, ¥Y® .. Y® guch that

YO, Y@, YO e, and E = [YO, YO, YO,

These points may be replaced by p others that are mutually orthogonal,
as follows.

Put XO = YD, and define X® = Y®-}-},; X® where the constant A, is
chosen such that XOX® — XOY®@ ), XDXD — 0; this is possible because
XD = YO £ O since YO, Y@ .. Y® are independent. Assume now that,
for some k with 2 <C k& < p, we have already defined £—1 points

XO = YO X@ = YOL), XU X6 — YOL), XD L), XO),
Xk=D) — Yh-Dp )  XOLX, o XOf A g X2
satisfying the orthogonality conditions
XOXD =0 ifl <i<j<k—1
Then a further point X® of the form
X0 — YR L), XOLX XO4 LA, XD
may be determined such that also
XOX®) — X@OXW —  — XE-DXE — ()
because, for 1 < i < k—1, the equations
XOX® = XOY® ), XOXD = (

have a solution 2,,; since XOX® = 0,
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By this construction, we obtain p independent points X®, X@ . X®)
such that

X® = YO Xy XD Ny XO AN XED (1 <k < p),
XOX0D =0 (1 <t <j<p).
By these equations,
YOY® — 32, XOXO4)2, XOX@ L 12, | XEDXED | X®XE®
and therefore XBX®E L YRY® L1 (1 < k< p),
so that also X®, X®@  ~ X® e G, . It is further obvious that
[XD, X&) X)) = [YO, YO, YO = B,
Write XV =t, [XO| =1, .. |XP|=4¢,
so that ¢, > 0, #, > 0,..., , > 0. Since the points X® are orthogonal in
pairs, an orthogonal transformation X -~ X’ = QX of R, exists for which
XU =1, QU, X®=1QU0, .. X® =1 QU,.
Here U, = (1,0,...,0), U,=(0,1,...,0), .., U, =(0,0,.,1)
are the n unit points on the coordinate axes in R,. Therefore
0<t; <L, 0<t, <1, .., 0<t <I,
since, as already shown, | X®| < 1; hence also
0 <t <1, wheret=11t,..1,

We have therefore the result that every point E 5 O of X{P) = (G, )® can
be written as _ _
HE=(QWE; (0 <t<1),
where E; is the special point
Ey = [0, Us,..., U,

in Ry which has just one coordinate equal to 1 and all the others 0, while
Q® denotes the pth compound of Q. It is well known that the compounds
of orthogonal transformations are again orthogonal. The result just proved
means therefore that )
Bl <1 ifEe X,

hence that {7 < G\ N (n, p).

We finally show that the converse, Gy N @(n,p) < Z{P), also holds. Let
= be any point satisfying

Bl <1 and Ee(n,p).
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Then E may again be written as a compound
B = [X0, X X0
of p points X®, X® ... X® that are orthogonal in pairs. Put again
X0 = £, [XO| =1y, ., |[XO] =1, &=ty
then ¢ = |E] << 1. Now
[5; XD, 6, X®, . 5, XO] = [XD XO  XP] if §;8y...8, = 1.
There is no loss of generality in assuming that
0<t, <1, 0<t, <1, .., 0<t, <1,
ie. that X®, X® . X®e @, Hence E e i), as asserted. This concludes
the proof.

2. TaroreM 2. I'\P) is the convex hull of the intersection of the Girassmann
manifold (n, p) with the spherical surface Cy: |E| = 1.

Proof. By the last theorem, I'{? is the convex hull of

P = Gy N (n,p).
As the origin O lies in all three sets I'{?), Gy, and Q(n, p), this means that
every point E of I'(?’ belongs either to the interior, or to the boundary, of
a certain simplex S’ with vertices at O, Ej, Ej,..., &), where the points
Ey% are elements of Gy N (n,p). To each vertex Ej there is a number
iz > 1 such that the point
EK = tK‘E”I\’ (]{ = 15 2:"" ZV)

lies on Cy and therefore also on Cy N &(n,p). The new simplex with the
vertices O, E,, E,,..., By evidently contains S” as a subset, hence has E as
an element. But this means exactly that I'{#) coincides with the convex
hull of O N &(n, p), as was to be proved.

3. Asan application of Theorem 2, let us determine the compound body
I'® = [G4]®, for which we write more simply I'.

Let X = (2D, 2V, 2V, 2fV) and X®@ = (2(?, a{?, 2, 2{?)) be two general
points in R,, and let B = (&,&,,...,&) = [XD, X@] be their compound
point in R, with the coordinates numbered in such a way that

— 1 — e

f = aPaP—aP 2, & =alaP—afall, & = ol —aiP g,
— — 2 — .

§ =P —aPall), & =aPaP—aPall, & = gV e —alP s

note the change of sign of £;. Then £(4, 2) = £, say, becomes the cone
E16HEEHEE =0,

and Oy = C, say, is the spherical surface

g = 1.
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Our aim is to determine the convex hull of C'n . This will be done by
evaluating first the tac function and then the distance function of this
convex hull I'.

4. Let H = (94, 93,--., ) be an arbitrary point not O in Rg. The tac
function ©(H) of I' is given by

6
O(H) = max ¥ &y,
H=1

where E = (£, &,,--., &) runs over all points of ¢'N &, thus over all points
that satisfy the two equations

6 3

2 =1 > Sz = 0.
H=1 H=1

This maximum problem can be solved as follows. Put
6 3
a= 3 i b=273% Ny ims
H=1 H=1
The maximum is attained at a stationary point of the function
6 ;6 3
O =23 &y 7)}1—%)‘( 5%1—1)‘—:““ 2 s
H=1 H=1 H=1

where A and p are the Lagrange parameters. On differentiating with
respect to the variables £;;, we obtain the equations

nug—Ag—pégs =0 (H=12,.,6), (1)
in which the index H -3 is understood (mod 6). From these equations,
6 6
A= 3 &y =2 Enisnu- (2)
H=1 H=1

At the maximum, A is evidently positive.
For convenience, put

From (1), we obtain the values

192

—3 2— ;5 —
A, = ’71_197274’ A, = 2 M5 Ay = ﬁiuﬁgs,

_19n]+7)1 —19'n)+775 —l?'n3+7']6
)\gl =S e A§5 = = " N Afﬁ = 7
Therefore

(771—19‘7]4)("19771‘*_774)"1-(772_'9775)(—‘19772—}_7}5)‘*‘(7}3—_197)6)(—19‘7734_7]6) =0,

which is equivalent to
b—2ad+bd* =0 or HP—2ad4+1=0.
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Therefore ¢ has one of the two values

P = aty/(a®—1).

Next
3 3
AP (1—92)* E:: (=011 +5)* +HE=1(—1977H+77H+3)2
—2bd+ad?,
so that
N2 a—2b94-ad? b(l+z92)a~219 _ 2029 —29 b
=922 (19224 4a29R—492 297
Since A, as the value of ®(H), is to be as large as possible, it must have the
value given by 9 = a2 1),
and so
2___h2
A= _é—*w == %(){a—}—\/((xz—l)} = w.

2{a—/(a2—1)} 2

In order to simplify this formula, we introduce the new parameters
Sutéis = 2Xp, E—Emas = 2Xp 435
Nt nmis = 2V, N —"+s = 2V s

6 6
Then X=>éymg =22 Xyly,
H=1 H=1

and

(H=1,23).

6
— 2
a=23 Vi,

=1

3 3
a+b ~HE Mg+ 1ms)? = z:
3
a—0 = 2; NH— 17H+:3 =4 z YH,
6 3
so that A= 3 Y%1+2{ > Yy E Y?H}%-
H= HZ1 H=a

Thus, on extracting the square root,

P AL RETE

H=1
and so the final result for ©(H) is

O(H) = (Y34+Y34 Y3 - (Yi+Y24Y3)L, (3)
or, in explicit form,
O(H) = {(n1+n2)*+(m2+m5)2+ (3-F 7)1+
{1 —n0)*F (na—15)*+ (n3— 1)}
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5. The distance function ®(E) of I' is given, in terms of its tac function
O(H), by the equation l:H[
D(E) = max —
H:/o OH)’

We introduce again the parameters X; and ¥}; so that ©(H) is given by the
formula (3), and the product EH takes the form

6 6
EH =3 &y =223 Xp¥y
H=1 H=1

Hence, with the abbreviations

w= F(VELYEEYDE and o= 4 (V3HY2LVR)
the expression for the distance function ®(Z) takes the form

6
®(E) = 2max ’ > XHI?I’,
H=1
where the maximum is extended over all parameters ¥}, satisfying
u+v < 1.

At the maximum, the Y;;’s obviously have signs making all products
Xy Yy non-negative. If Y, Y,, Y; vary so as to leave u constant, the sum
X, Y +X,Y,+ X, Y, assumes its greatest value when

Y, =1tX,, ¥, = tX,, }g
here the proportionality factor ¢ is given by

(XT3

X2) = w2
Hence

max(X, ¥+ X, Yt X, ¥y) = [f(X3+ X34 X3) =

= (X3 X3 X3
A similar formula holds for the sum of the other three terms. Thus

wu+v<1

DE) = 2 max {w( X34+ X34+ X3 Ho(X3+X2+X3)H,
w=0,v=0
whence O(E) = 2max{(X7+ X534 X3), (X3 X2+ X35)8

Therefore, on returning to the original coordinates, the final result is that
the distance function is equal to

OE) = max” Z ($H+ £ 43) } ) (Hisl(gﬂﬁff“"y)%}

6. This result means that I' consists of all points Z satisfying the two
inequalities
3

(ffl—]f_511+3)2 < 1)
H=1

3
g (n—Ene)® < 1;
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hence I' is the intersection of two ellipsoidal cylinders. It is not difficult
to deduce from this that I" has the volume

2

3

V() =

-3
Lo

Further, I' contains the sphere of radius ,/} and centre O, as the largest
of this kind, but is itself contained in the unit sphere .

I have not so far succeeded in obtaining similar formulae for higher
spherical compounds I'{?.

Mathematics Department,
Manchester University.



