THE p-TH COMPOUND OF A SPHERE

By KURT MAHLER

[Received 30 June 1954.—Read 25 November 1954]

Let $G_n: |X| \leq 1$ be the unit sphere in R_n , and let $\Gamma_n^{(p)} = \lceil G_n \rceil^{(p)}$ be its pth

compound in R_N , where $N = \binom{n}{n}$. By definition, $\Gamma_n^{(p)}$ is the convex hull of the set $\Sigma_n^{(p)} = \langle G_n \rangle^{(p)}$ which consists of all compound points

$$\Xi = \left[X^{(1)}, X^{(2)}, ..., X^{(p)} \right] \ \ \, \text{where} \,\, X^{(1)}, \, X^{(2)}, ..., \, X^{(p)} \in G_n.$$

Our aim is to give more explicit definitions of $\Sigma_n^{(p)}$ and $\Gamma_n^{(p)}$.

1. Theorem 1. $\Sigma_n^{(p)}$ is the intersection of the N-dimensional unit sphere G_N : $|\Xi| \leq 1$ with the Grassmann manifold $\Omega(n,p)$.

Proof. Let $\Xi \neq O$ be an arbitrary point of $\Sigma_n^{(p)}$. There exist then p linearly independent points $Y^{(1)}$, $Y^{(2)}$,..., $Y^{(p)}$ such that

$$Y^{(1)},\,Y^{(2)},...,\,Y^{(p)}\!\in G_n\quad\text{and}\quad\Xi=\big[Y^{(1)},Y^{(2)},...,Y^{(p)}\big].$$

These points may be replaced by p others that are mutually orthogonal,

Put $X^{(1)} = Y^{(1)}$, and define $X^{(2)} = Y^{(2)} + \lambda_{21} X^{(1)}$ where the constant λ_{21} is

as follows.

chosen such that $X^{(1)}X^{(2)}=X^{(1)}Y^{(2)}+\lambda_{21}X^{(1)}X^{(1)}=0$; this is possible because $X^{(1)} = Y^{(1)} \neq O$ since $Y^{(1)}, Y^{(2)}, \dots, Y^{(p)}$ are independent. Assume now that, for some k with $2 \leq k \leq p$, we have already defined k-1 points

$$\begin{split} X^{(1)} &= Y^{(1)}, \quad X^{(2)} &= Y^{(2)} + \lambda_{21} X^{(1)}, \quad X^{(3)} &= Y^{(3)} + \lambda_{31} X^{(1)} + \lambda_{32} X^{(2)}, \quad ..., \\ X^{(k-1)} &= Y^{(k-1)} + \lambda_{k-11} X^{(1)} + \lambda_{k-12} X^{(2)} + ... + \lambda_{k-1k-2} X^{(k-2)} \end{split}$$

satisfying the orthogonality conditions

$$X^{(i)}X^{(j)} = 0$$
 if $1 \leqslant i < j \leqslant k-1$.

Then a further point $X^{(k)}$ of the form

$$X^{(k)} = Y^{(k)} + \lambda_{k,1} X^{(1)} + \lambda_{k,2} X^{(2)} + ... + \lambda_{k,k-1} X^{(k-1)}$$

may be determined such that also

$$X^{(1)}X^{(k)} = X^{(2)}X^{(k)} = \dots = X^{(k-1)}X^{(k)} = 0,$$

because, for $1 \leq i \leq k-1$, the equations

$$X^{(i)}X^{(k)} = X^{(i)}Y^{(k)} + \lambda_{ki}X^{(i)}X^{(i)} = 0$$

have a solution λ_{ki} since $X^{(i)}X^{(i)} > 0$.

Proc. London Math. Soc. (3) 5 (1955) 5388.3.5

386

such that

 $X^{(k)} = Y^{(k)} + \lambda_{k_1} X^{(1)} + \lambda_{k_2} X^{(2)} + \dots + \lambda_{k_{k-1}} X^{(k-1)} \quad (1 \leqslant k \leqslant p),$ $X^{(i)}X^{(j)} = 0 \quad (1 \le i < j \le p).$ By these equations,

By this construction, we obtain p independent points $X^{(1)}$, $X^{(2)}$,..., $X^{(p)}$

 $Y^{(k)}Y^{(k)} = \lambda_{k1}^2 X^{(1)}X^{(1)} + \lambda_{k2}^2 X^{(2)}X^{(2)} + \dots + \lambda_{kk-1}^2 X^{(k-1)}X^{(k-1)} + X^{(k)}X^{(k)}$ $X^{(k)}X^{(k)} \leqslant Y^{(k)}Y^{(k)} \leqslant 1 \quad (1 \leqslant k \leqslant p),$ and therefore

so that also $X^{(1)}, X^{(2)}, \dots, X^{(p)} \in G_n$. It is further obvious that $\lceil X^{(1)}, X^{(2)}, ..., X^{(p)} \rceil = \lceil Y^{(1)}, Y^{(2)}, ..., Y^{(p)} \rceil = \Xi.$ $|X^{(1)}| = t_1, \quad |X^{(2)}| = t_2, \quad \dots, \quad |X^{(p)}| = t_n,$ Write

so that $t_1 > 0$, $t_2 > 0$,..., $t_p > 0$. Since the points $X^{(i)}$ are orthogonal in pairs, an orthogonal transformation $X \to X' = \Omega X$ of R_n exists for which $X^{(1)} = t_1 \Omega U_1, \quad X^{(2)} = t_2 \Omega U_2, \quad \dots, \quad X^{(p)} = t_n \Omega U_n.$

Here $U_1 = (1, 0, ..., 0), U_2 = (0, 1, ..., 0), ..., U_n = (0, 0, ..., 1)$

are the n unit points on the coordinate axes in R_n . Therefore $0 < t_1 \le 1, \quad 0 < t_2 \le 1, \quad \dots, \quad 0 < t_p \le 1,$

since, as already shown, $|X^{(i)}| \leq 1$; hence also

since, as already shown,
$$|X^{(j)}| \leqslant 1$$
, hence also $0 < t \leqslant 1$, where $t = t_1 t_2 ... t_p$.

We have therefore the result that every point $\Xi \neq O$ of $\Sigma_n^{(p)} = \langle G_n \rangle^{(p)}$ can

be written as $\Xi = t \Omega^{(p)} \Xi_0 \quad (0 < t \leqslant 1),$

where Ξ_0 is the special point

 $\Xi_0 = [U_1, U_2, ..., U_n]$

in R_N which has just one coordinate equal to 1 and all the others 0, while

 $\Omega^{(p)}$ denotes the pth compound of Ω . It is well known that the compounds of orthogonal transformations are again orthogonal. The result just proved

means therefore that

 $|\Xi| \leqslant 1$ if $\Xi \in \Sigma_{\mathbf{r}}^{(p)}$. hence that $\Sigma_n^{(p)} \subseteq G_N \cap \mathbf{\Omega}(n,p)$.

We finally show that the converse, $G_N \cap \Omega(n,p) \subseteq \Sigma_n^{(p)}$, also holds. Let

Ξ be any point satisfying $|\Xi| \leqslant 1$ and $\Xi \in \mathbf{\Omega}(n, p)$. Then Ξ may again be written as a compound

of
$$p$$
 points $X^{(1)}$, $X^{(2)}$,..., $X^{(p)}$ that are orthogonal in pairs. Put again $|X^{(1)}|=t_1, \quad |X^{(2)}|=t_2, \quad ..., \quad |X^{(p)}|=t_p, \quad t=t_1t_2...t_p;$ then $t=|\Xi|\leqslant 1$. Now

$$[s_1X^{(1)},s_2X^{(2)},...,s_pX^{(p)}]=[X^{(1)},X^{(2)},...,X^{(p)}] \quad \text{if $s_1s_2...s_p=1$.}$$
 There is no loss of generality in assuming that

 $\Xi = [X^{(1)}, X^{(2)}, ..., X^{(p)}]$

 $0 \leqslant t_1 \leqslant 1$, $0 \leqslant t_2 \leqslant 1$, ..., $0 \leqslant t_n \leqslant 1$, i.e. that $X^{(1)}, X^{(2)}, ..., X^{(p)} \in G_n$. Hence $\Xi \in \Sigma_n^{(p)}$, as asserted. This concludes

2. Theorem 2. $\Gamma_n^{(p)}$ is the convex hull of the intersection of the Grassmann manifold $\Omega(n,p)$ with the spherical surface C_N : $|\Xi|=1$.

vanifold
$$\Omega(n, p)$$
 with the spherical surface C_N : $|\Xi| = 1$.

Proof. By the last theorem, $\Gamma_n^{(p)}$ is the convex hull of

 $\Sigma_n^{(p)} = G_N \cap \mathbf{\Omega}(n,p).$

As the origin O lies in all three sets $\Gamma_n^{(p)}$, G_N , and $\Omega(n, p)$, this means that every point Ξ of $\Gamma_n^{(p)}$ belongs either to the interior, or to the boundary, of

a certain simplex S' with vertices at O, Ξ'_1 , Ξ'_2 ,..., Ξ'_N , where the points

 Ξ_K' are elements of $G_N \cap \Omega(n,p)$. To each vertex Ξ_K' there is a number

$$\Xi_K$$
 are elements of $G_N\cap \Sigma(n,p)$. To each vertex Ξ_K there is a number $t_K\geqslant 1$ such that the point $\Xi_K=t_K\,\Xi_K'$ $(K=1,\,2,...,\,N)$

lies on C_N and therefore also on $C_N \cap \Omega(n,p)$. The new simplex with the

vertices $O, \Xi_1, \Xi_2, ..., \Xi_N$ evidently contains S' as a subset, hence has Ξ as an element. But this means exactly that $\Gamma_n^{(p)}$ coincides with the convex hull of $C_N \cap \Omega(n, p)$, as was to be proved.

3. As an application of Theorem 2, let us determine the compound body

 $\Gamma_A^{(2)} = [G_A]^{(2)}$, for which we write more simply Γ . Let $X^{(1)}=(x_0^{(1)},x_1^{(1)},x_2^{(1)},x_3^{(1)})$ and $X^{(2)}=(x_0^{(2)},x_1^{(2)},x_2^{(2)},x_3^{(2)})$ be two general points in R_4 , and let $\Xi = (\xi_1, \xi_2, ..., \xi_6) = [X^{(1)}, X^{(2)}]$ be their compound

point in R_6 , with the coordinates numbered in such a way that $\xi_1 = x_0^{(1)} x_1^{(2)} - x_0^{(2)} x_1^{(1)}, \qquad \xi_2 = x_0^{(1)} x_2^{(2)} - x_0^{(2)} x_2^{(1)}, \qquad \xi_3 = x_0^{(1)} x_3^{(2)} - x_0^{(2)} x_3^{(1)},$

 $\xi_4 = x_2^{(1)} x_3^{(2)} - x_2^{(2)} x_3^{(1)}, \qquad \xi_5 = x_3^{(1)} x_1^{(2)} - x_3^{(2)} x_1^{(1)}, \qquad \xi_6 = x_1^{(1)} x_2^{(2)} - x_1^{(2)} x_2^{(1)};$ note the change of sign of ξ_5 . Then $\Omega(4,2)=\Omega$, say, becomes the cone

 $\xi_1 \xi_4 + \xi_2 \xi_5 + \xi_3 \xi_6 = 0,$ and $C_6 = C$, say, is the spherical surface

 $\xi_1^2 + \xi_2^2 + \dots + \xi_6^2 = 1.$

4. Let $H = (\eta_1, \eta_2, ..., \eta_6)$ be an arbitrary point not O in R_6 . The tac function $\Theta(H)$ of Γ is given by $\Theta(\mathsf{H}) = \max \sum_{H=1}^{6} \xi_H \eta_H,$ where $\Xi = (\xi_1, \xi_2, ..., \xi_6)$ runs over all points of $C \cap \Omega$, thus over all points

Our aim is to determine the convex hull of $C \cap \Omega$. This will be done by evaluating first the tac function and then the distance function of this

that satisfy the two equations
$$\sum_{H=1}^6 \xi_H^2 = 1, \quad \sum_{H=1}^3 \xi_H \, \xi_{H+3} = 0.$$

This maximum problem can be solved as follows. Put $a = \sum_{H=1}^{6} \eta_{H}^{2}, \qquad b = 2 \sum_{H=1}^{3} \eta_{H} \eta_{H+3}.$

The maximum is attained at a stationary point of the function
$$\Phi = \sum_{H=1}^{6} \xi_H \, \eta_H - \frac{1}{2} \lambda \Big(\sum_{H=1}^{6} \xi_H^2 - 1 \Big) - \mu \sum_{H=1}^{3} \xi_H \, \xi_{H+3},$$
 where λ and μ are the Lagrange parameters. On differentiating with

where λ and μ are the Lagrange parameters. On differentiating with respect to the variables ξ_H , we obtain the equations

respect to the variables
$$\xi_H$$
, we obtain the equations
$$\eta_H - \lambda \xi_H - \mu \xi_{H+3} = 0 \quad (H=1, 2, ..., 6),$$
 in which the index $H+3$ is understood (mod 6). From these equations,

 $\lambda \xi_1 = \frac{\eta_1 - \vartheta \eta_4}{1 - \vartheta^2}, \qquad \lambda \xi_2 = \frac{\eta_2 - \vartheta \eta_5}{1 - \vartheta^2}, \qquad \lambda \xi_3 = \frac{\eta_3 - \vartheta \eta_6}{1 - \vartheta^2},$

 $\lambda \xi_4 = rac{-artheta \eta_1 + \eta_4}{1 - artheta^2}, \qquad \lambda \xi_5 = rac{-artheta \eta_2 + \eta_5}{1 - artheta^2}, \qquad \lambda \xi_6 = rac{-artheta \eta_3 + \eta_6}{1 - artheta^2}.$

 $(\eta_1 - \vartheta \eta_4)(-\vartheta \eta_1 + \eta_4) + (\eta_2 - \vartheta \eta_5)(-\vartheta \eta_2 + \eta_5) + (\eta_3 - \vartheta \eta_6)(-\vartheta \eta_3 + \eta_6) = 0,$

 $b-2a\vartheta+b\vartheta^2=0$ or $\vartheta^2-2\alpha\vartheta+1=0$.

 $\lambda = \sum_{H=1}^{9} \xi_H \, \eta_H, \qquad \mu = \sum_{H=1}^{9} \xi_{H+3} \, \eta_H.$ At the maximum, λ is evidently positive.

$$v =$$

$$\vartheta =$$

 $\vartheta = \frac{\mu}{\lambda}, \qquad \alpha = \frac{a}{h}.$

$$\vartheta =$$

$$-\mu \sum_{H=1}^{\infty}$$
 ers. Or

(1)

(2)

For convenience, put

Therefore

which is equivalent to

From (1), we obtain the values

389

(3)

Next

Therefore ϑ has one of the two values

 $=a-2b\vartheta+a\vartheta^2$ so that $\lambda^2 = \frac{a - 2b\vartheta + a\vartheta^2}{(1 - \vartheta^2)^2} = b\frac{(1 + \vartheta^2)\alpha - 2\vartheta}{(1 + \vartheta^2)^2 - 4\vartheta^2} = b\frac{2\alpha^2\vartheta - 2\vartheta}{4\alpha^2\vartheta^2 - 4\vartheta^2} = \frac{b}{2\vartheta}.$

 $\theta = \alpha + \sqrt{(\alpha^2 - 1)}$.

 $\lambda^2 (1 - \vartheta^2)^2 = \sum_{h=1}^3 (\eta_H - \vartheta \eta_{H+3})^2 + \sum_{h=1}^3 (-\vartheta \eta_H + \eta_{H+3})^2$

Since
$$\lambda$$
, as the value of $\Theta(\mathsf{H})$, is to be as large as possible, it must have the value given by $\vartheta = \alpha - \sqrt{(\alpha^2 - 1)}$,

value given by and so

so that

Thus, on extracting the square root,

and so the final result for $\Theta(H)$ is

 $\Theta(\mathsf{H}) = \{(\eta_1 + \eta_4)^2 + (\eta_2 + \eta_5)^2 + (\eta_3 + \eta_6)^2\}^{\frac{1}{2}} +$

or, in explicit form,

Then and

 $\lambda^2 = \frac{b}{2!(\alpha - 1/(\alpha^2 - 1))} = \frac{1}{2}b\{\alpha + \sqrt{(\alpha^2 - 1)}\} = \frac{a + \sqrt{(a^2 - b^2)}}{2}.$ In order to simplify this formula, we introduce the new parameters

 $\eta_H + \eta_{H+3} = 2Y_H, \quad \eta_H - \eta_{H+3} = 2Y_{H+3}$

 $\lambda = \sum_{H=1}^{6} \xi_H \, \eta_H = 2 \sum_{H=1}^{6} X_H \, Y_H,$

 $a+b = \sum_{H=1}^{3} (\eta_H + \eta_{H+3})^2 = 4 \sum_{H=1}^{3} Y_H^2,$

 $a-b = \sum_{H=4}^{3} (\eta_H - \eta_{H+3})^2 = 4 \sum_{H=4}^{6} Y_H^2,$

 $\lambda^2 = \sum_{h=1}^{6} Y_H^2 + 2 \left(\sum_{h=1}^{3} Y_H^2 \sum_{h=1}^{6} Y_H^2 \right)^{\frac{1}{2}}.$

 $\lambda = \left\{ \left. \sum_{h=1}^3 Y_H^2 \right\}^{\frac{1}{2}} + \left\{ \left. \sum_{h=1}^6 Y_H^2 \right\}^{\frac{1}{2}}, \right.$

 $\Theta(\mathsf{H}) = (Y_1^2 + Y_2^2 + Y_2^2)^{\frac{1}{2}} + (Y_4^2 + Y_5^2 + Y_6^2)^{\frac{1}{2}},$

 $+\{(\eta_1-\eta_4)^2+(\eta_2-\eta_5)^2+(\eta_3-\eta_6)^2\}^{\frac{1}{2}}.$

 $a = 2 \sum_{h=0}^{6} Y_H^2,$

 $\xi_H + \xi_{H+3} = 2X_H, \quad \xi_H - \xi_{H+3} = 2X_{H+3}; \quad (H = 1, 2, 3).$

 $\theta = \alpha - \sqrt{(\alpha^2 - 1)}$

K. MAHLER

5. The distance function $\Phi(\Xi)$ of Γ is given, in terms of its tac function

 $\Phi(\Xi) = \max_{\Xi \neq 0} \frac{|\Xi H|}{\Theta(H)}.$

 $\Theta(H)$, by the equation

390

We introduce again the parameters X_H and Y_H so that $\Theta(\mathsf{H})$ is given by the formula (3), and the product ΞH takes the form $\Xi H = \sum_{H=1}^{6} \xi_H \, \eta_H = 2 \sum_{H=1}^{6} X_H Y_H.$

$$\exists \mathsf{H} = \sum\limits_{H=1}^{} \xi_H \, \eta_H = 2 \sum\limits_{H=1}^{} X_H \, dH$$
 ne abbreviations

Hence, with the abbreviations $u = +(Y_1^2 + Y_2^2 + Y_3^2)^{\frac{1}{2}}$ and $v = +(Y_4^2 + Y_5^2 + Y_6^2)^{\frac{1}{2}}$,

$$u=+(Y_1^2\!+\!Y_2^2\!+\!Y_3^2)^{\frac{1}{2}}$$
 and $v=-1$ he expression for the distance function $\Phi(\Xi)$

the expression for the distance function $\Phi(\Xi)$ takes the form $\Phi(\Xi) = 2 \max \left| \sum_{H=1}^{6} X_{H} Y_{H} \right|,$

where the maximum is extended over all parameters
$$Y_H$$
 satisfying $u{+}v\leqslant 1.$

At the maximum, the Y_H 's obviously have signs making all products $X_H Y_H$ non-negative. If Y_1, Y_2, Y_3 vary so as to leave u constant, the sum

$$X_1Y_1+X_2Y_2+X_3Y_3$$
 assumes its greatest value when
$$Y_1=tX_1, \qquad Y_2=tX_2, \qquad Y_3=tX_3,$$

 $Y_1 = tX_1, \qquad Y_2 = tX_2, \qquad Y_3 = tX_3;$

here the proportionality factor
$$t$$
 is given by
$$t^{2}(\mathbf{Y}_{2}^{2}+\mathbf{Y}_{2}^{2}+\mathbf{Y}_{2}^{2}) = x^{2}$$

 $t^2(X_1^2 + X_2^2 + X_2^2) = u^2$

Hence
$$\max(X_1Y_1+X_2Y_2+X_3Y_3)=|t|(X_1^2+X_2^2+X_3^2)=+u(X_1^2+X_2^2+X_3^2)^{\frac{1}{2}}.$$

A similar formula holds for the sum of the other three terms. Thus

$$\Phi(\Xi) = 2 \max_{\substack{u \geqslant 0, \ v \geqslant 0 \\ u+v \leqslant 1}} \{ u(X_1^2 \! + \! X_2^2 \! + \! X_3^2)^{\frac{1}{2}} \! + \! v(X_4^2 \! + \! X_5^2 \! + \! X_6^2)^{\frac{1}{2}} \},$$

 $\Phi(\Xi) = 2 \max\{(X_1^2 + X_2^2 + X_3^2)^{\frac{1}{2}}, (X_4^2 + X_5^2 + X_4^2)^{\frac{1}{2}}\}.$

whence Therefore, on returning to the original coordinates, the final result is that the distance function is equal to

 $\Phi(\Xi) = \max \left\{ \left(\sum_{H=1}^{3} (\xi_H + \xi_{H+3})^2 \right)^{\frac{1}{2}}, \left(\sum_{H=1}^{3} (\xi_H - \xi_{H+3})^2 \right)^{\frac{1}{2}} \right\}.$ 6. This result means that Γ consists of all points Ξ satisfying the two

inequalities $\sum_{H=1}^{3} (\xi_H + \xi_{H+3})^2 \leqslant 1, \qquad \sum_{H=1}^{3} (\xi_H - \xi_{H+3})^2 \leqslant 1;$

391

$$V(\Gamma) = \frac{\pi^2}{72}.$$

to deduce from this that Γ has the volume

Further, Γ contains the sphere of radius $\sqrt{\frac{1}{2}}$ and centre O, as the largest of this kind, but is itself contained in the unit sphere G_6 . I have not so far succeeded in obtaining similar formulae for higher

spherical compounds $\Gamma_n^{(p)}$.

Mathematics Department, Manchester University.