A MATRIX REPRESENTATION OF THE PRIMITIVE
RESIDUE CLASSES (mod 27)

K. MAHLER

A problem! in the geometry of numbers recently lead me to con-
sider some simple matrices with elements 0, 1, and —1. I found to
my surprise that these matrices had inverses of the same kind, that
they were commutative, and that they in fact formed an Abelian
group. These matrices are discussed in the present note.

1. Let m and n be two positive integers such that

1< m<n, (m, n) = 1.
Let further s#0 be a parameter and ¢ one of its #th roots,
" = s.
There are thus # distinct possible values for ¢, the values 1, t5, - - - , £,

say.
Now denote by

A(m, n) = (ars) and B(m, n) = (bnp)

the two n X% matrices with the following elements. For each pair of

suffixes b, k=1, 2, - - -, n determine integers 4, 7, ¢, and 7 such that
km— h — 1
km — h = i (mod n), 0L<ifn—-1,¢g=——-———,
n
and
. . km -+ h—
km 4+ h = j (mod n), 1<j<n,r=———=,
n
Then put
agr=s5s1f0<i<m—1, ar=0ifm <1< n—1;

e = s71if 1 < 7 < m, br=0ifm+1<j5<n
Thus, by way of example,
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1 It has been conjectured that the symmetric convex domain in the plane of given
lattice determinant and smallest area is bounded by line segments and osculating
hyperbolae arcs. The discussion of such domains leads to systems of linear equations
which have matrices just as considered in this note, and I found their group property
when I tried to solve the equations.
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1 s 0 s? 0 0 1 s

1 0 s s? 010 s
A(3,5) =11 0 s s, B(2,5) =10 1 0 s Of.

01 s 0 s? 1 0 0 s O

01 0 s s? 1 0 s 0O

We shall study these matrices mainly in the case when m is odd
and s has the value —1, but, for the present, do not yet impose these
restrictions.

2. Denote by
x= (o), y=1n, z2=(w
three variable # X1 matrices (column vectors) such that
y=A(m, n)x and z = B(m, n)x,
or in explicit form,
Yo = Z": 23227 Zp = :V_: brrxk.
k=1 k=1
Further put, for shortness,

V=yi+tys+ Lys+ -+ "y,
Z ="z 4 1" 4 -+ - 4 1801+ Zn.

Then
n n n
Y= 23 " lawxs = 2 i
haml K==l k=1
where

n
U = Z gy,

Rl
and similarly
n n n
Z =203 " Mhuar = 2 0a
heml k=l k=1

where

Vi = Z [t TY%

h=1
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3. These expressions can be replaced by simpler ones. From the
definition of ax it is evident that

sUtl=grath—l= ghmmicl i b h=ng+i, 0<i<m—1,
th—lahk__

0 if bm—h=nq+i, m<i<n—1.
Therefore
n m—1 —_— tm
— Z fhlg,, = Z pm—i—1 — j(—Dm ,
h=1 i=0 — 1
whence
> —-
Y = t(k——l)m X
k=1 1 —¢

1 —tm
1 —

i

(1 + tmae + 2mag + - - 17Dy,
On combining this formula with the definition of ¥, we obtain

the First Identity,

A=+ tye + Bys+ - - - + 7 ly,)
= (1 — Ifm)(xl + 1™y + t2mx3 + - + t(n—-l)mx”).

Similarly, by the definition of by,

(1

_— {s"lt"—" =rrh=tim=i if km+h=nr+j, 1<j<m,
" if km+h=nr+j, m+1<j<n.

Thus now
n m ) 1 —_fm
Vp = Z tn—hbhk = Z thm—i — t(k—1)m ,
h=1 jml 1—1¢
hence
—ym
z=3woal 2
k=1 1
1 —¢m

- (%14 tm2s + P7ay + - - - 2Dy,

and therefore, from the definition of Z,

(1 —_ t)(t”“zl + 24 - fza Zn)
= (1 — t™) (%1 4 tma2 4 2725 4+« 4 ti—idmy,),

- Here the left-hand side may also be written as
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—t"(1 = (a1 + s+ 2y 4 - - Dy,

Since ¢"=s, we obtain then the Second Identity,
—s(1 — (a1 4 t7l8e + %3 + - - - A £ (=Dg))
= (1 = t™) (a1 + t"xs + 2™xg + - - - 4 O~ Dmy),
4. Denote by 7 an arbitrary parameter, by
£ = (&)

an arbitrary # X1 matrix (column vector), and put

eE[D) =1 =D+ rh+ s+ -+ ).
In this notation, the two identities (1) and (2) take the simple form

B(y| ) = ®(x|t™) and —sd(z| 1Y) = B(x]|tm),

(2)

respectively. Here, for s#0, t may be any one of #;, 5, - - - , tn.
LeEMMA 1. Let o be distinct from 0 and 1, and let 71, T, + + - , Tn denote
the n roots of the equation v =a. For any n given numbers ¢1, ¢, - - - , Gn
there exists one and only one vector £ such that
@(EIT},)=¢}, (h=1.2,~--,n).

ProoF. The expression ® may also be written as
B[ 1) = (&1 = ofa) + 7alta — &)
2 n—1
+ ma(Es — &) + -+ i (En — Ea-v).
The hypothesis 60 implies that the # roots 7y, 74, - - -, 7, are all
distinct, hence that the Vandermonde determinant
—1
N [k, 1

does not vanish. The assertion is therefore proved if it can be shown
that the # linear forms

El - O'En, 52 - Ely 23 - gzv Ty Eﬂ —;En—-l

in &, &, - - -, &, are linearly independent. However, the determinant
of these forms evidently equals 1 —¢ and so, by 61, does not vanish,
whence the assertion.

LemmA 2. Let s™, hence also s and s™*, be distinct from 0 and 1, and
let 1, ta, - - -, I, be the roots of t*=s. The n equations

3) (y| t) = d(x) th) (h=1,2,---,n)
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define a nonsingular linear mapping of x on y and vice versa; and the
n equations

—1 m
(4) —s®(z|th) = ®(x|th) (h=1,2,--,m)
similarly define a nonsingular linear mapping of x on z and vice versa.

ProoF. The assertion is contained in Lemma 1 applied with ¢=s,
o=s"1 and o =s™, respectively.

COROLLARY. If s™is distinct from 0 and 1, then the two matrices
A(m, n) and B(m, n) are both nonsingular.

5. From now on we impose the additional conditions that

misodd, and s= — 1.
Hence #, ts, - - + , t, now satisfy the equation
* = -1,
Thus, for odd n, —#, —4t, - - -, —t, are all the nth roots of unity,
while, for even #, t, t;, - - -, t. are all those (2n)th roots of unity

which are not also #th roots of unity. The equations (3) connecting
x and y remain unchanged, but the equations (4) between x and 2 now
become

Bl h) = (=|th)  (h=1,2-,m),
or equivalent to this,
(5) ®(z|th) = ®(x| b ) (h=1,2,-+-,n).

Since, by hypothesis, m is prime to n, and further m is odd, it is
obvious that both the mth powers

m m m
biyla, -, ta,
and the (—m)th powers
t:m’t; ,...'t;""
of t, by, + - -, t, are again these same roots, only possibly arranged
in a different order.
For, first, = —1 implies that also (t™)* = (t—™)"= —1 because m is

odd. Secondly, by (m, n) =1, there exist integers M and N such that
mM+nN=1. Hence, if t"=#"= —1 and ¢>¢, then

{m M i N t
(—-) (—) = — 1 and therefore t™ s /'™ ™ 5 ¢'=m,

t’/ m 4'n 4
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6. From now on we change the notation slightly and allow m to be
a positive or negative integer such that

(6) (m, n) =1, lglml <n-—1, m is odd.
In extension of the previous notation we then put
A(m, n) i m >0,

A(m, n) = {B(—m, n) if m < 0.

Therefore, in either case, the mapping
y = A(m, n)x

is equivalent to the system of # formulae,

o(y| ) = ®(x| 1) (h=1,2,---,m).

Next, let m’ be a second integer satisfying the conditions (6); the
case when m' =m is not excluded. Further let

5= A, n)y
so that also
z = A(m', n)A(m, n)x.
The definition of 2z implies that
o | ) = ®(y| 1) (h=1,2,---,n).

Now, as we saw above, we can write

m’
th = ley

(k(ll) k(22) " .- .' 2(%))

is a certain permutation. Therefore

where

oz h) = ¥y | i) = 3y | tew) = B(x| frw)
and finally
ez ) =@y (h=1,2,---,n).

By the hypothesis, mm’ is odd and prime to %, hence also prime
to 2n. Hence there exists a unique integer u such that



19571 PRIMITIVE RESIDUR CLASSES

Jo1

p = m'm (mod 2n), 1< |p) £n—1

and therefore also
(u, n) = 1, u is odd.
The congruence for u implies in particular that

m’'m

th =l (h=1,2,--

It follows then that

®(z| 1) = ®(x|h) (h=1,2,---

These equations show, however, that necessarily
z2=A(u, n)x
and we obtain the final result that
Am', m)A(m, n) = Ay, n).
The following theorem has thus been proved.

THEOREM. The ¢(2n) matrices A (m, n), where

-, n).

, 1),

(m, 2n) = 1, 1§|m[§n-—-1,

form under multiplication an Abelian group which is isomorphic to the
group of primitive residue classes (mod 2n). The isomorphism is defined

by
A(m, n) <> {m (mod 2m)}.
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