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(Eingegangen am 20. 8. 1957)

Textbooks on elementary number theory discuss, under the name of
Chinese Remainder Theorem, the well-known method fiir solving systems
of linear congruences
(1) x = r; (mod m;) (1=1,2,...,k)
when the moduli m, are relatively prime in pairs. This method (naturally
not in the modern notation) occurs in the Sun Tzu Suan Ching of the 4th
century A. D. and the Chang Chiu-Chien Suan Ching (ca. 475 A. D.). It
was used particularly by the astronomer-monk I-Hsing (682—727). The
reader is referred to Dickson’s History of the Theory of Numbers, and
especially to the third volume of ..Science and Civilisation in China‘ by
Needham and Wang, which will appear shortly and contain the mathema-
tical sections.

Chinese texts treat also the more general case when the moduli m; are
not prime in pairs. It is not quite easy to understand these very short
passages because, as usual, only problems and short rules how to solve them
are given, while there is no proof or any clear statement of conditions on
the 7, or m;. I am trying in this note to reproduce what I believe is the
mathematical content of this old Chinese method. This method is entirely
different from that in Gauss’s Disquisitiones Arithmeticae, and I cannot
remember finding it in Western books.

1. The general form of the Chinese Remainder Theorem states:
Theorem. The system of linear congruences
(1) x = r; (mod m;) (t=1,2,..., k)
has integral solutions x if and only if
(2) (m;,m;) | r;—r; for all pairs i, j with i==7j.
That the condition (2) is necessary is obvious. For put

d;;=(m;, m;), so that d;;|m;, d;;|m;.
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Then
r=r;(mod d;;) and z=r;(modd,;),
hence
O0=z—ax=r,—r; (modd,;).

It is rather more difficult to show that condition (2) is also sufficient.
The Chinese contribution consists here in the following result, where Lcm
denotes the Least Common Multiple.

Lemma 1. Let the condition (2) be satisfied, and let uy, . . ., u, be integers
such that
(3) ;| m; (t=1,2,..., k),
(4) Lem (py, ..., u) = Lem(my, ...,m,).

Then every solution x of
(5) T=T; (mOd/uz) (7’:1:2’7k)
also satisfies the congruences (1).

Proof. Denote by p,, ..., p, the distinct prime factors of m,,...,m,, by

(6) m;=pyt ... p (G=1,2,...,k
the prime factorizations of the moduli m;, and by
(7) w=pi . pt (G=1,2...,k

those of the moduli x;. The exponents a;, and «,;, are thus non-negative
integers. By the hypotheses (3) and (4),

(8) 0o, <a;, =1, 2,..., k; =1, 2,...,1),

and

9) max @,= max o (r=1, 2,...,¢
i=1,2,..., k i=1,2,..., k

Put therefore

(10) a,= max @;;= maxX o, (r=1,2,...,1)

i=1, 2,..., k i=1, 2 3

Then

(11) Lem (s . . .y i) = Lom (my, .. om) =py' e pt

Further denote by 4, for each r= 1,2, ..., ¢t asuffix 1, 2, . . ., k such that

(12) %; .=a, and hence also a; ,=a,

because of (8) and (10).

The two systems of k congruences (1) and (5) are equivalent to the
two systems of k¢ congruences

(13) e=r;(modp, ") (=1,2,..  k;t=1,2,...,1
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and
(14) r=r,(modp. ") (=1,2,..., k;it=1,2,...,1),

respectively. The assertion is therefore proved if it can be shown that each
of the t systems of k congruences

(15) x=r; (mod p.' ") (t=1,2,...,k; 7 fixed)
and
(16) r=r;(modp,'") (t=1,2,..., k; 7 fixed)

is equivalent to one and the same single congruence
(17) x=r, (modp,").

This can be done as follows. First, the congruence (17) is that element
of both systems (15) and (16) which belongs to the suffix ¢ = 4,, and hence
both (15) and (16) imply (17).

Secondly, let « be any solution of (17). Then

r=r; (mod pzir’) ,
8o that
=r;+ (r;,,—r;) (mod p:if’), =7, (mod p.'%) t=12,...,k).
because
a0 < @ and P =(pT, p) 1~

from the hypothesis. Hence (17) implies (15), and by the same reasoning
it also implies (16). This concludes the proof.

2. Lemma 2. The moduli uy, ..., u, of Lemma 1 may be chosen such
that
(18) (oo p) =1 if it
Proof. Select for each v =1, 2, ..., t a suffix §, such that
(19) a; . =a,.
Further put
(20) I (t—=1,2,..., 1)
10 if =7,
and define uy, ..., u; by (7). Then these moduli satisfy all the conditions

(3). (4), and (18).

3. The Theorem follows now at once from Lemmas 1 and 2 and from
the classical case of the Chinese Remainder Theorem when (18) holds. It
becomes also clear that in the general case the solutions x of (1) lie in a
unique residue class modulo Lem (mq, . . ., m,).



