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Intvoduction. Equations in free groups have recently attracted considerable
attention (see, for example, R. C. Lyndon and M. P. Schiitzenberger [3], G. Baumslag
[1]). Free metabelian groups share many properties with free groups, and we now
prove an analogue of a theorem about equations in free groups.

THEOREM. If a and b ave elements of a free metabelian group that ave linearly
independent modulo the devived group, and if n is any integer greatev than 1, then
ab™ is not an n-th power.

This theorem leaves unanswered a host of related questions. For example, if
¢, m, and n are integers greater than 1, can alp™ be an n-th power? This cer-
tainly seems unlikely. Of course, a and b must be linearly independent modulo the
derived group; for if u and v are elements of a metabelian group and v lies in the
derived group, then

w H2v®)? = w tva-v)2.

We effect the proof of our theorem by first reducing it in a standard way to a
problem in the group ring over the integers of a free abelian group (see G. Baumslag,
Bernhard H. Neumann, Hanna Neumann, and Peter M. Neumann [2]) and then solving
this problem with the help of elementary algebraic number theory.

The veduction to the gvoup ving. Suppose that a and b are elements of a free
metabelian group M and that they are linearly independent modulo M', the derived
group of M. By a theorem of Nielsen [4] it follows that we can find an automorphism
6 of M and a free set of generators x, y, z, --- such that

a6 =x% (M), b0 =y° (M") (@>0, 8>0).
We may therefore assume

X (M), b=y? (M) (a@a>0, 3>0).

il

(1) a
The homomorphism 7 of M into M defined by

xn =X, yn=y, zn=1
maps M into a free metabelian group of rank 2 in which an and bn are themselves

linearly independent modulo the derived group. Thus it suffices to settle the theorem
for a free metabelian group M of rank 2 on x and y with a and b given by (1).

As usual, we put
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where u, v;, -+, v are elements of M and n;, -+, n, . are integers.

m

Now let k = x~1 y‘1 xy. It is well-known that then every element of M' can be
uniquely represented in the form kF (x,y) , where F(x, y) is an element of the group
ring R of the free abelian group M/M'. Thus F(x, y) is a finite Laurent series of

the form Eyi,j xly), where y; j, i, and j are integers. It follows that every ele-
ment of M can be written uniquely in the form xM yH kF , where M and U are integers
and F is in R.

Assume now that a”b"™ = c¢™, where a and b are given by (1); we may clearly
assume n is a prime. Thus c¢ =x®yP (M'). Therefore we have the relations

a=x%" b=yPk®, c¢=x%Pk°® (A B CeR).

t

If we abbreviate zt"! +zt"2 + . +1 to ZZ—_—T

, then it is easy to show that

an_

)
no_  onp x®_1 /.

’

a

similarly for b™ and ¢™. Thus a”b" = c¢™ takes the form

Bn a Bin
-1 )Yﬁn+By -1 C(xay y -1

an
A(X
anank <%¥_1 yﬁ_l - (xayﬁ)nk %! yﬁ—l

(2)

X

Moreover, if u and v are elements of a metabelian group, then

n-1 nei
D0 wigic1Y

n n_n i=1 v-i
(v)? = u"v"[v, u]

Now
x@1 yB—l

{yB, XO[] - [Xa’ yﬁj-l -k x-1 y—l

Therefore it follows that
(xa yB)n - ¢ yﬁnkD,
where

n-1 .
3) D - '(X;--ll) (3;5——11) iZ:;l yﬁixa(LI)Y_if.;_-:l_)_l;}_,

We see then from (2) that in the group ring R we have the relation

AL+ x¥ + - + xa(n-l))yﬁn + B(1 + yB e g yﬁ(n—l)}
(4)
=D+ C(1 +xayﬁ+ ...+(Xa’y3)n-1)~
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The analysis of (4). Let A1(x%, yB) be the sum of all terms q; ; xiyj in A in
which i and j are multiples of @ and 8, respectively, and define By, C;, D; simi-
larly. If we now put X = x®, Y = yB, then it follows from (3) and (4) that

A YA +X++X""HY 4+ B (X, V)1 +Y + - +Y")
1 1

(5)
= D(X, Y) + C (X, V) (1 + XY + - + (XY)™}),
Now, by (3),
n-1
~ ii-l/Y' o1
(6) DX, ¥) = - D Y% (L)

Put X =z"1 , Y ==z in (5), where z is a primitive n-th root of unity. Then (5)
reduces to

0 Dl(z'1 , z)+nCl(z'l, z).

1l

Clearly, d = Dl(z'1 ,z) and e = Cy(z"!, z) are algebraic integers. However, by (6),

we find that

-1 .
~ 22 o1y 2@ i) et 2 - 1)+ (1 - 1))
d—-?}z( z—l)_ z-1

z[(zn'1+---+z+1) -n] _ nz

z -1 z-1°
This means that -e = z =1+ 1 . Hence
z -1 z -1
1
z-1- "¢ 1

is an algebraic integer. But z, and therefore also w =z - 1, is an algebraic integer
of degree n - 1. However, (w+1)® - 1=0. Since n> 1, w*+nw” ! + - + nw = 0,
and so also

wlenw? 440 =0,

This polynomial in w is therefore irreducible. Thus we find that w™! is a root of
an irreducible polynomial of the form

gn-l

f=n +e+nE+1.

Therefore w-1 is not an integer. This contradiction completes the proof of the
theorem.
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Added in proof. R. C. Lyndon has recently shown that for any three relatively
prime integers ¢, m, and n (¢ > 1, m > 1, n > 1) and every free metabelian group
M of rank at least 2, there exist elements a, b, ¢, with a and b independent
modulo M', such that

alp™ = c”,
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