MAHLER K. 1965 THE JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY Vol. V, part 1, p.p. 56-64

ARITHMETIC PROPERTIES OF LACUNARY POWER SERIES WITH INTEGRAL COEFFICIENTS

BY

K. MAHLER

Reprinted from
THE JOURNAL OF THE AUSTRALIAN
MATHEMATICAL SOCIETY
Volume V, Part 1, p.p. 56-64
1965

ARITHMETIC PROPERTIES OF LACUNARY POWER SERIES WITH INTEGRAL COEFFICIENTS

K. MAHLER

(received 14 August 1964)

To the memory of my dear friend J. F. Koksma

1

This note is concerned with arithmetic properties of power series

$$f(z) = \sum_{h=0}^{\infty} f_h z^h$$

with integral coefficients that are lacunary in the following sense. There are two infinite sequences of integers, $\{r_n\}$ and $\{s_n\}$, satisfying

(1)
$$0 = s_0 \le r_1 < s_1 \le r_2 < s_2 \le r_3 < s_3 \le \cdots, \qquad \lim_{n \to \infty} \frac{s_n}{r_n} = \infty,$$

such that

(2)
$$f_h = 0 \text{ if } r_n < h < s_n, \text{ but } f_{r_n} \neq 0, f_{s_n} \neq 0$$
 $(n = 1, 2, 3, \cdots).$

It is also assumed that f(z) has a positive radius of convergence, R_f say, where naturally

$$0 < R_f \leq 1$$
.

A power series with these properties will be called admissible.

Let f(z) be admissible, and let α be any algebraic number inside the circle of convergence,

$$|\alpha| < R_f$$
.

Or aim is to establish a simple test for deciding whether the value $f(\alpha)$ is an algebraic or a transcendental number. As will be found, the answer depends on the behaviour of the polynomials

(3)
$$P_n(z) = \sum_{h=s_n}^{r_{n+1}} f_h z^h \qquad (n = 0, 1, 2, \cdots).$$

In terms of these polynomials, f(z) allows the development

$$f(z) = \sum_{n=0}^{\infty} P_n(z)$$

which likewise converges when $|z| < R_f$.

Arithmetic properties of lacunary power series

 $a(z) = a_0 + a_1 z + \cdots + a_m z^m$

 $H(a) = \max_{0 \le j \le m} |a_j|, \quad L(a) = \sum_{i=0}^{m} |a_i|.$

(5)

or

(6)

(7)

If

[2]

The following theorem is due to R. Güting (Michigan Math. J., 8 (1961), 149 - 159).

Lemma 1. Let α be an algebraic number which satisfies the equation $A(\alpha) = 0$, where $A(z) = A_0 + A_1 z + \cdots + A_M z^M$ $(A_M \neq 0)$

is an irreducible polynomial with integral coefficients. If $a(z) = a_0 + a_1 z + \cdots + a_m z^m$ is a second polynomial with integral coefficients, then either

 $a(\alpha) = 0$

 $|a(\alpha)| \ge (L(a)^{M-1}L(A)^m)^{-1}.$

3

The main result of this note may be stated as follows.

THEOREM 1. Let f(z) be an admissible power series, and let α be any algebraic number satisfying $|\alpha| < R_f$. The function value $f(\alpha)$ is algebraic

if and only if there exists a positive integer $N = N(\alpha)$ such that $P_n(\alpha) = 0$ for all $n \geq N$. Corollary: If the coefficients f_h are non-negative, then f(z) is transcendental for all positive algebraic numbers $\alpha < R_f$. There exist, however,

examples of admissible functions f(z) with $f_h \ge 0$ for which S_f , as defined

 $\beta^{(0)}, \beta^{(1)}, \cdots, \beta^{(l-1)}$

in 4, is everywhere dense in $|z| < R_f$. PROOF. It is obvious that the condition is sufficient, and so we need only

show that it is also necessary.

We shall thus assume that the function value

 $f(\alpha) = \sum_{h=0}^{\infty} f_h \alpha^h, = \beta^{(0)}$ say,

is an algebraic number, say of degree l over the rational field. Let

be its conjugates, and let c_0 be a positive integer such that the products $c_0\beta^{(0)}, c_0\beta^{(1)}, \cdots, c_0\beta^{(l-1)}$

K. Mahler

 $\beta^{(0)}, \dots, \beta^{(l-1)}$, but are independent of n. In particular, we choose c_1 such that

are algebraic integers.

58

(9)

 $|lpha|<rac{1}{c_{*}}< R_{f}, ext{ hence} ext{ } c_{1}>1, ext{ } |c_{1}lpha|<1,$ (8)and c_2 such that

We denote by c_1, c_2, \cdots positive constants that may depend on α ,

 $|f_h| \leq c_1^h c_2$ for all $h \geq 0$. Put

 $p_{n\lambda}(z) = -\beta^{(\lambda)} + \sum_{h=0}^{r_n} f_h z^h$ $(\lambda = 0, 1, \dots, l-1)$ (10)

and $p_n(z) = c_0^l \prod_{i=0}^{l-1} p_{n\lambda}(z).$

Then $p_n(z)$ is a polynomial in z of degree lr_n with integral coefficients. From the second formula (5),

 $L(p_n) \leq c_0^l \prod_{n=0}^{l-1} L(p_{n\lambda}),$

and here by (8) and (9),

 $L(p_{n\lambda}) \leq |\beta^{(\lambda)}| + \sum_{k=0}^{r_n} |f_k| \leq c_1^{r_n} c_3$ $(\lambda = 0, 1, \cdots, l-1).$

It follows that

 $L(\phi_n) \leq c_1^{lr_n} c_4$. (11)

Since α is algebraic, it is the root of an irreducible equation $A(\alpha) = 0$ where A(z) is, say of degree M. On applying Lemma 1, with $a(z) = p_n(z)$,

we deduce from (11) that either

 $p_n(\alpha) = 0$

 $|p_n(\alpha)| \ge \{(c_1^{lr_n}c_4)^{M-1}L(A)^{lr_n}\}^{-1} \ge c_5^{-lr_n}.$

or (12)

However, the second alternative (12) cannot hold if n is sufficiently large. For by (6), (9), and (10),

and it is also obvious that $|\phi_{m}(\alpha)| \leq c_{\pi}$

On combining these estimates it follows that
$$|p_n(\alpha)| \le c_0^l \cdot |c_1\alpha|^{s_n} c_6 \cdot c_7^{l-1} < c_5^{-lr_n}$$

 $(\lambda = 1, 2, \cdots, l-1).$

for all sufficiently large n, because by (1) and (8),

$$|c_1 \alpha| < 1, \quad \lim_{n \to \infty} \frac{s_n}{r_n} = \infty.$$

Arithmetic properties of lacunary power series

 $|p_{n0}(\alpha)| = |\sum_{h=0}^{\infty} f_h \alpha^h| \leq |c_1 \alpha|^{s_n} c_6$,

Thus there exists an integer N_0 such that

Thus there exists an integer
$$N_0$$
 such that $p_n(\alpha) = 0$ for all $n \ge N_0$

 $\phi_n(\alpha) = 0$ for all $n \ge N_0$.

$$p_n(\alpha) = 0$$
 for all $n \ge N_0$.
This means that to every integer $n \ge N_0$ there exists a suffix λ_n which has one of the values $0, 1, 2, \dots, l-1$ such that

$$P_n(\alpha) = \sum_{h=0}^{r_{n+1}} f_h \alpha^h - \sum_{h=0}^{r_n} f_h \alpha^h = \beta^{(\lambda_{n+1})} - \beta^{(\lambda_n)} \quad \text{if} \quad n \ge N_0.$$
 Now $f(\alpha)$ is a convergent series, and hence

 $\lim_{n\to\infty} P_n(\alpha) = 0.$

ne
$$l$$
 conjugate numbers (7)

 $\sum_{n=0}^{r_n} f_n \alpha^n = \beta^{(\lambda_n)}.$

On the other hand, the l conjugate numbers (7) are all distinct. There is then an integer $N \geq N_0$ with the property that

$$\geqq N_0$$
 with the property tha $\lambda_{n+1} = \lambda_n$ if $n \ge N_n$

By (13), this implies that

giving the assertion.

Therefore also

(13)

 $P_n(\alpha) = 0$ if $n \ge N$,

Let Σ be a set of algebraic numbers, S a subset of Σ . For each element α of Σ denote by $A(\alpha)$ the set of all algebraic conjugates α , α' , α'' , \cdots

of α that belong to Σ . We say that the set S is complete relative to Σ if

60 K. Mahler [5] $\alpha \in S$ implies that also $A(\alpha) \in S$.

Let again f(z) be an admissible power series. Then denote by Σ_t the set of all algebraic numbers α satisfying $|\alpha| < R_f$ and by S_f the set of all

 $\alpha \in \Sigma_f$ for which $f(\alpha)$ is algebraic. Theorem 2. If f(z) is admissible, the set S_f is complete relative to Σ_f .

PROOF. Let α be any element of S_t , and let q(z) be the primitive irreducible polynomial with integral coefficients and positive highest coefficient for which $q(\alpha) = 0$. By Theorem 1,

 $P_n(\alpha) = 0$ for $n \ge N$, and hence $P_n(z)$ is divisible by q(z) for all suffixes $n \ge N$.

Hence, if α' is any conjugate of α , also

$$\alpha$$
 is any conjugate of α , also

 $P_n(\alpha') = 0$ for $n \ge N$.

Assume, in particular, that $\alpha' \in \Sigma_f$, hence that $f(\alpha')$ converges. Then, by

Theorem 1, $f(\alpha')$ is algebraic, and therefore also α' is in S_f .

5

The following result establishes all possible sets S_t in which an

admissible power series can assume algebraic values. Theorem 3. Let R be a positive constant not greater than 1; let Σ be the

set of all algebraic numbers α satisfying $|\alpha| < R$; and let S be any subset of Σ which contains the element 0 and is complete relative to Σ . Then there exists an admissible power series f(z) with the property that

 $R_t = R$ and $S_t = S$. Proof. As a set of algebraic numbers, S is countable. It is therefore

possible to define an infinite sequence of polynomials

$$\{q_n(z)\} = \{q_0(z), q_1(z), q_2(z), \cdots\}$$

with the following properties.

If S consists of the single element 0, put $q_n(z) \equiv 1$ for all suffixes n. If S is a finite set, take for the first finitely many elements of $\{q_n(z)\}$ all

distinct primitive irreducible polynomials with integral coefficients and positive highest coefficients that vanish in at least one point α of S, and

put all remaining sequence elements equal to $q_n(z) \equiv 1$. If, finally, S is an infinite set, let $\{q_n(z)\}$ consist of all distinct primitive irreducible polyArithmetic properties of lacunary power series

denote by d_n the degree of $Q_n(z)$; and put $H_{\cdot \cdot \cdot} = H(O_{\cdot \cdot \cdot})$

Next choose a sequence of integers
$$\{s_n\}$$
 where
$$0 = s_0 < s_1 < s_2 < \cdots$$

$$0 = s_{\mathbf{0}} < s_{\mathbf{1}} < s_{\mathbf{2}} < \cdot$$
 such that

$$0=s_0 < s_1 < s_2 < \cdots$$
 h that
$$\lim_{n\to\infty}\frac{s_n}{d_n}=\infty, \ \lim_{n\to\infty}\frac{s_{n+1}}{s_n}=\infty, \ \lim_{n\to\infty}H_n^{1/s_n}=1$$

(14)
$$\lim_{n \to \infty} \frac{s_n}{d_n} = \infty,$$
 and

[6]

(1)

and

(4)

On putting

$$s_{n+1}$$

$$s_{n+1} > s_n + d_n$$

$$r_{n+1} = s_n + d_n$$

$$s_{n+1}>s_n+d_n$$
 Hence, on putting
$$r_{n+1}=s_n+d_n$$
 the two sequences $\{r_n\}$ and $\{s_n\}$ have the property

$$(n = 0, 1, 2, \cdots).$$

 $(n = 0, 1, 2, \cdots),$

$$(n=0,1,2,\cdots),$$

 $(n = 0, 1, 2, \cdots).$

Finally denote by $\{K_n\}$ a sequence of positive integers satisfying $\lim_{n\to\infty} K_n^{1/s_n} = \frac{1}{R}.$ (15)

$$0 = s_0 \le r_1 < s_1 \le r_2 < s_2 \le r_3 < s_3 \le \cdots, \lim_{n \to \infty} \frac{s_n}{r_n} = \infty.$$
The tally denote by $\{K_n\}$ a sequence of positive integers satis

nce of positive
$$e = \frac{1}{D}.$$

61

$$P_n(z) = K_n Q_n(z) z^{s_n}, = \sum_{h=s_n}^{r_{n+1}} f_h z^h \text{ say}$$
 $(n = 0, 1, 2, \cdots),$

$$f(z) = \sum_{n=0}^{\infty} P_n(z) = \sum_{n=0}^{\infty} f_n z^n,$$

$$f(z) = \sum_{n=0}^{\infty} P_n(z) = \sum_{h=0}^{\infty} f_h z^h,$$

$$n=0$$
 $h=0$ $f(z)$ is a lacunary power series of the kind defined in § 1. Distinct polynomials $P_n(z)$ evidently involve different powers of z ,

so that the contributions to f(z) from these polynomials do not overlap.

To prove that f(z) is admissible we have to prove that the radius R_t

of convergence of f(z) is positive. In fact $\frac{1}{R} = \limsup |f_h|^{1/h},$

and this, by the formulae (1) and (14), is equal to

 $\frac{1}{R_f} = \lim_{s_n \le h \le r_{n+1}} |f_h|^{1/s_n}.$ Further

 $|f_n| \le H_n K_n$ for $s_n \le h \le r_{n+1}$,

K. Mahler

with equality for at least one suffix h in this interval. Hence, by (14) and (15), $\frac{1}{R_f} = \limsup_{n \to \infty} (H_n K_n)^{1/s_n} = \frac{1}{R},$

 $R_{\scriptscriptstyle f} = R > 0.$ $S_f = S$

The second assertion is now an immediate consequence of Theorem 1 and the construction of the polynomials $P_n(z)$. For if α is any element of S, then evidently $P_n(z)$, for sufficiently large n, will be divisible by the polynomial $q_{\nu}(z)$ which has α

as a root, and so $\alpha \in S_f$. On the other hand, if α is not an element of S,

no polynomial $q_{\nu}(z)$ and hence also no polynomial $P_{n}(z)$ vanishes for $z=\alpha$.

6 The two Theorems 1 and 3 together solve the problem of establishing

all possible sets S_t in which an admissible function may be algebraic. In order to obtain further results, it becomes necessary to specialise f(z). Let us, in particular, consider those admissible power series

 $f(z) = \sum_{h=0}^{\infty} f_h z^h$

which are of the bounded type, i.e. to which there exists a positive constant

c such that $|f_h| \le c$ for all $h \ge 0$. (16)For such series the set S_t is restricted as follows.

Theorem 4. If f(z) is an admissible power series of the bounded type, then S_f may, or may not, be an infinite set. If

 $S_f = \{\alpha_1, \alpha_2, \alpha_3, \cdots\}$ is an infinite set, then

 $\lim_{k\to\infty} |\alpha_k| = R_f = 1.$

PROOF. (i) It is obvious from Theorem 1 that there exist admissible power series of the bounded type for which S_f is a finite set, e.g. consists of the single point 0. The following construction, on the other hand, leads to such a series for which S_t is an infinite set. We procede similarly as in the proof of Theorem 3, but take R=1 and

Arithmetic properties of lacunary power series

[8]

 $q_n(z) = 1 - z^{3^n} - z^{2 \cdot 3^n}, \quad K_n = 1 \quad (n = 0, 1, 2, \cdots).$ Then, in the former notation,

$$H_n=1 \qquad \qquad (n=0,\,1,\,2,\,\cdots),$$
 because the Taylor coefficients of $Q_n(z)=q_0(z)q_1(z)\,\cdots\,q_n(z)$ all can only

be equal to 0, +1, or -1. The construction leads therefore to an admissible power series f(z) the Taylor coefficients of which likewise can only be equal to 0, +1, or -1. Furthermore, the corresponding set S_t consists of

the infinitely many numbers
$$\sqrt[3^n]{\frac{\sqrt{5}-1}{2}} \qquad (n=0,1,2,\cdots).$$

(ii). Next let f(z) be an admissible power series of the bounded type, thus with the radius of convergence $R_f = 1$, and let r and R be any two

constants satisfying 0 < r < R < 1.

Let
$$S_f(r)$$
 be the subset of those elements α of S_f for which

 $|\alpha| \leq r$.

We apply again the formulae (3) and (4) and put

$$P_n^*(z) = z^{-s_n} P_n(z) = \sum_{h=s_n}^{r_{n+1}} f_h z^{h-s_n} \qquad (n = 1, 2, 3, \cdots);$$

here, by (2),

$$P_n^*(0) = f_{s_n} \neq 0$$
 $(n = 1, 2, 3, \cdots).$

Therefore, by Jensen's formula,

$$\sum_{lpha} \log rac{R}{|lpha|} = \log rac{1}{|f_{s_n}|} + rac{1}{2\pi} \!\int_0^{2\pi} \log |P_n^*(Re^{artheta\,i})| dartheta,$$

where \sum_{α} extends over all zeros α of $P_n^*(z)$ for which $|\alpha| \leq R$. Here, on

the right-hand side,

 $\log \frac{1}{|f_n|} \leq 0$, $|P_n^*(Re^{\vartheta i})| \leq c(1+R+R^2+\cdots) = \frac{c}{1-R}$ for real ϑ ,

where c is the constant in (16).

K. Mahler Assume, in particular, that $|\alpha| \leq r$ and hence $\log R/|\alpha| \geq \log R/r$. The inequality (17) shows then that $P_n^*(z)$ cannot have more than $\left(\log \frac{c}{1-R}\right) / \left(\log \frac{R}{r}\right)$ zeros for which $|\alpha| \leq r$. This estimate is independent on n. On allowing both R and r to tend to 1, the assertion follows immediately from

Theorem 1.

Mathematics Department,

Mathematics Department,
Institute of Advanced Studies,
Australian National University,

Canberra, A.C.T.
11th August, 1964