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Let A be the set of all numbers « > 1 for which none of the powers
a, a2, a3, ... is an integer. For every positive integer = there exists ab
least one integer g, which is closest to «" and thus satisfies the inequality

" —gal <1[2.
We are here concerned with the lower limit

1/n

P(a) = liminf [a" —g,|

N—>00

which trivially has the property
0 <P(a) <1 for all aed.
A few years ago, one of us (Mahler, 1957) proved that
P(a) =1 if « is any rational number in A.

One can further show that there are irrational algebraic numbers

aed for which P(a) =1; e.g. the number %(2 +l/§—|—l/'3 +4I/§) is of
this kind. Tt is also well known that there exist algebraic numbers a in A
for which

0 < P(a) <1

e.g. the number (1 V5 ) has this property.

In the present note, the following three results will be proved.

(a) If P(a) =0, then a is transcendental.

(b) In every meighbourhood of every nmumber x > 1 there exist non-
countably many oaeA for which P(a) = 0.

(¢) For almost all a in A, P(a) = 1; thus there are transcendental
numbers with this property.
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Proof of (a). Let « be an algebraic number of degree m, and let

M- 1
flr) = aga™ fa ™ Vb, = a, [] (i —al)
=0
be a primitive irreducible polynomial with integral coefficients of which
a = " is a zero. For each n the product
m-—1
(":)t'” (“(ﬂ)n “—fn) = Pu
=0
say, is an integer. This integer is distinct from zero because «* # g, and
hence also
ad—g. #£0  (u=0,1,...,m—1).
Therefore
Ipul =1

Next « > 1, hence ¢, > 1, and therefore

W(/’)n RS JM(W(N)] +1)"
s0 that
m—1 "
oo [ [ 10" =gl < il [ [ 1110
yiy] p=1

Here
g < 'L < (2)"

and so finally

M-

<Pl = ]U‘ — Il ‘(‘)“ " “’(JEI] ‘/-(”) F1) })ll.

p=1

There exists then a constant ¢ > 1 depending only on « such that

ld" —g,| = ¢ ™ for all n,

proving that P(a) > 0. Conversely, if P(«) = 0, then « necessarily is
transcendental.

Proof of (b). Let  >1, 0 <& < J(r—1). We show that there iy
a sequence of positive integers

1 =mng<<ny <y << ... <My < ...

depending on 2, but not on ¢ with the following property:

Given any sequence {7} with 7, equal to either 0 or 1 (briefly, an
n-sequence), there is a real number «, where

(1) ' 0 <w—a<e,
such that
(2) lim {|a"*— — Y, \”"k——m}

k—so0
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Clearly if %, = 0 for infinitely many values of k, then P(a) = 0;
and if {5}, {n;} are two essentially different #-sequences, i.e. such that
yi # nr for infinitely many k, then the corresponding real numbers «
and o are distinet. Since there are non-countably many essentially different
y-sequences, we obtain non-countably many a with P(a) = 0 in the
(left) e-neighbourhood of x, hence also non-countably many aed with
this property.

For the proof take any increasing sequence ny, which satisfies the
condition

1 Tpa\ "\
3) — o loglt—2( ") )<
My, 2

The condition is clearly satisfied if #; increases sufficiently rapidly.
Let {n:} be an arbitrary z-sequence and e > 0; we may assume
e << L. Determine K >1 so that

o e
(1) ,U R

We define now x =z, >, > x, > ... as follows: For 0 <k < K
we set xy = ¢ se that for some & > K, x;_, has already been deter-
mined so that

Mt ey, o for k> 0.

~ ok - -
(H) Ll fa) 2 % (e—1) < ap_, <.
Set
(6) Xk = ap1-Ap, ;. integer, 1 << 2, < 2

We then define
(7) wp = (gt by b2

Clearly %7],4#"’””& <1 <Ay, @, <@, and so the second half
of inequality (5) is satisfied. We now show that also

O N T B R . )
Set
(Slu
(8) 'T'I; - -r'];, 1 1 — Y

By (6) and (7) we have for & > K

o~ kn (sk "k
Wt Lo -2 7% = (a2 (1 — =

Hy,
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or setting

- ~kn - ‘
Cp = dp—%mp—2"""%, 0 < (<2,

By (5) therefore

1-+ax\ ™ 14a\~™
(9) 0 < §, << —log (1—Ck (_ir) ) << —log (1 — (—jl—i) ),

henee by (5) and (8),

S

e > F(@41)+2 @ —1) (1 + %log(1—2 (lw)~ k))
'k

2

> D42 e,
since
o\~ —
(10) wlﬁlog 1-—2 1w > ~—ic—12‘k"k“lm“”’f*l/n.
Ny, 2 - x4+1 i

-1
. x—1 okl (2 1 ﬁ_’"ﬂ 2k)
i x—1

by (3). Thus (5) is proved for xy.
From (5) and the monotonity of x; it follows that « = lim

k-—soco
exists and }(14x) < a <. From (8) and (9) we find, since &, = 0 for
1 <k < K, that

x S b 1 1\~ ™
a:xl](l———"—)}m [(1—]~——A-log(1—2( ~|06) ))
=K e k=K K -2
% ¢--1 @1 A)“
> 1 ok 2 -2
’I[( i r—1 )( x—1
k=K
| (1~-—2"'”')‘>w( ____) — z—e

by (10) and (4). Hence (1) is proved.
Tt only remains to verify (2). We shall first prove that

(11) al > ap+Lgp-27"" for  m >k > 0.
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Equality obviously holds for m = k, by (7); suppose therefore that
the inequality is true for m —1. We then have for m > k

n n (Sm "
"'rmﬁl' = 7//1" 1 (by (8))

n?}l

| 1 by "\
= (ap |- Lop-+27 0 D) (l + - —1ug(1 7—2( Ai—) ))
”'Ill/ :‘4

(by (9) and (11))

g B b2 Ry (12 (by (3))
\/‘ (((’,‘: %‘%‘/’7]‘:}‘2 ('nl)"lp)(l__: nmkj’_]ln{c) (1)y (5))
;\/ (,/Iﬁ‘%‘%77k+‘27(7n71)nk_‘2;””% (by (6))

- o-—-mn
g g B2,
and (11) is proved. But (11) implies

A"k o= 1im alk = | L.

M. >00
On the other hand

’ -k
(lnl" < I//” = ay, {‘ o"/la % 2 "
by (7), therefore

R A S | S P
—_ ny. - a ny. — Ky Khg. / o+ 3 -
2 1/nyg < I(l.nk4~(lkll/"/" < (%+2 I\nh)l,nh if e = 17
and (2) holds with ¢, = a.
Proof of (¢). Let & a and b be real numbers satisfying
0<e<1<a<h,

and denote by A(e) the set of all aed satisfying P(a) << 1—e, and
by A(e, a, b) the subset of those aed (e) for which

a < a b

The upper bound for P(a) means that there exists to a an infinite
set N of positive integers » satisfying

‘ n - e -
(12) [ —g,| < (1—%e)", Ga = 2.
Therefore, if aed (e, a,b), then for each such n,

ta" < Ld" < g, < 24" < 20",
because
(1 ‘*%F)n <1< 712.(/11‘

=
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This further implies that, if neN is given, the integer ¢, has not more
than 2b" possibilities. Next, if both ne N and ¢, are given, then « is by (12)
restricted to the interval

]n(.(]n): {(/n (] "'*"}‘C)"}l/’” S {.(/n {’(1 “’%8)“}1/“'
of length
2(1—%e)"
(n-ym *

ngl,

For large n this is less than (1-—%e)"/a" ! because

{gn_] (l o 713 F)’IL}]/,IL o {gn L (1 . .1) (0)11} 1/n ~

’(;n,ul)/n > 0 (n 1)/n(l/n~| - 2 a’ -1
N
Therefore, for each sufficiently large element n of N, the total length
of all the intervals I, (g,) corresponding to possible values of ¢, is less

than

This again implies that every point a of A (e, a,b) lies in the union of
a countable set of intervals of total length not exceeding

o0

—1 n
o N0

a
M=

where m can be chogen as large as we please.
If now
b < ——
1— s
then S; converges, and hence A (e, a, b) has the Lebesgue measure zero.
Since the set A (e) can be written as

= U A('S? 313'8)“('%1)7 (1_38)7?)7

n=1
it evidently is a union of ('ountably many sets all of measure zero. There-
fore A (e) and hence also U A (1/n) have the measure zero, which proves
=1

the assertion.
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