BULL, AUSTRAL, MATH, SOC.

An arithmetic remark on entire periodic functions

Kurt Mahler

For every positive number $\,\omega$, there exists an odd entire transcendental function

$$f(z) = \sum_{h=0}^{\infty} a_h \frac{z^{2h+1}}{(2h+1)!}$$

with rational integral coefficients $\ a_{h}$ such that $f(z+\omega) \,=\, f(z) \ .$

 $g(z) = \sum_{h=0}^{\infty} c_h \frac{z^{2h+1}}{(2h+1)!}$

an odd entire function with real coefficients
$$\ c_h$$
 where, in particular, $\ c_0 \geq 2$.

The odd powers of g(z) allow the similar developments

The odd powers of
$$g(z)$$
 allow the similar developments
$$\frac{g(z)^{2n+1}}{(2n+1)!} = \sum_{l=0}^{\infty} \frac{c_{nl}}{(2h+1)!} \quad (n=0, 1, 2, \ldots) ,$$

and here

(1)
$$c_{nn} \ge 2^{2n+1} \quad (n = 0, 1, 2, ...)$$

 $f(z) = \sum_{n=0}^{\infty} b_n \frac{g(z)^{2n+1}}{(2n+1)!}$

Kurt Mahler

Next let

where
$$b_0$$
, b_1 , b_2 , \dots denote real numbers which are determined by the following construction.

We have

z. On putting

(2)

of

by (2),

(3)

and therefore

and that for $n \ge 1$, on account of (1),

 $=\sum_{h=0}^{\infty} a_h \frac{z^{2h+1}}{(2h+1)!}$,

 $a_h = \sum_{n=0}^{\infty} b_n c_{nh} \quad (h = 0, 1, 2, ...)$.

It is thus possible to choose the coefficients b_n successively such that

0 < $b_{\cap} \le 2^{-1}$, and $a_{\cap} \le 1$ is an integer,

 $0 \le b_n \le 2^{-(2n+1)}$, and $a_n \ne 0$ is an integer.

 $M(r) = \max_{|z|=p} |f(z)|$, $M_1(r) = \max_{|z|=p} |g(z)|$,

 $M(r) \le \sum_{n=0}^{\infty} 2^{-(2n+1)} \frac{M_0(r)^{2n+1}}{(2n+1)!}$

 $M(r) < \exp\left(M_{\Omega}(r)/2\right)$.

By this construction, f(z) becomes an entire transcendental function

 $f(z) = \sum_{n=0}^{\infty} b_n \sum_{k=0}^{\infty} c_{nh} \frac{z^{2h+1}}{(2h+1)!}$

say, and here the new coefficients a_{b} are given by

In the result so obtained, choose now

2.

 $a(z) = \sin(2\pi z/\Omega)$.

where
$$\Omega$$
 is a constant satisfying

$$0 < \Omega \leq \pi$$
.

Then g(z) is an odd entire function with the period Ω , $q(z+\Omega) = q(z)$.

and it has a power series

$$g(z) = \sum_{h=0}^{\infty} c_h \frac{z^{2h+1}}{(2h+1)!}$$

where
$$c_0 = 2\pi/\Omega \ge 2$$
 as required. The preceding construction leads therefore to an odd entire transcendental function
$$\left(-(2\pi\pi)\right)^{2n+1}$$

$$_{\infty}$$
 $\left(\sin\left(2\pi z\right)\right)^{2n+1}$

$$f(z) = \sum_{n=0}^{\infty} b_n \frac{\left[\sin\left(\frac{2\pi z}{\Omega}\right)\right]^{2n+1}}{(2n+1)!}$$
 of period Ω , and with non-vanishing integral coefficients a_h . The

for by the choice of g(z), $M_1(r) < e^{2\pi r/\Omega}$.

maximum modulus M(r) of this function evidently satisfies the inequality

 $M(r) < \exp\left\{\frac{e^{2\pi r/\Omega}}{2}\right\}$;

The following result can now be proved.

f(z) of period ω ,

THEOREM. Let ω be an arbitrary positive constant. There exist two positive constants $\, c \,$ and $\, r_{0} \,$ and an odd entire transcendental function

 $f(z+\omega) = f(z) .$

G(z) such that the function

points.

$$f(z) = \sum_{h=0}^{\infty} a_h \frac{z^{2h+1}}{(2h+1)!}$$
 are rational integers not zero, and that further

clal

$$|f(z)| < e^{e^{C|z|}}$$
 if $|z| \ge r_0$.

If, however, $\omega > \pi$, then choose for k so large a positive integer that the quantity $\Omega = \omega/k$ satisfies the inequality $0 < \Omega \le \pi$. The theorem is then valid with Ω instead of ω ; but a function of period Ω has also the period $\omega = k\Omega$.

Proof. The assertion has already been established if $0 \le \omega \le \pi$.

The interest of the theorem lies in the fact that all the function values

$$f^{(\tau)}(\lambda\omega)$$
 , $\begin{cases} \lambda = 0, 1, 2, ... \\ \tau = 0, 1, 2, ... \end{cases}$

are rational integers. It is implicit in a theorem by Schneider [1, p. 149 , Satz 12] that an entire transcendental function of bounded order and of period ω cannot have this property.

period ω cannot have this property. A similar proof allows to show that there exists an entire function

$$F(z) = \frac{e^{G(z)}}{\Gamma(z)}$$
 and all its derivatives assume rational integral values at all integral

Reference

An arithmetic remark

[1] Theodor Schneider, Einführung in die transzendenten Zahlen (Grundlehren der mathematischen Wissenschaften, Band 81. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957).

Ohio State University, Columbus,

Ohio, USA.

Department of Mathematics,