VOL. 5 (1971), 415-419.

BULL, AUSTRAL, MATH, SOC.

An elementary existence theorem for entire functions

Kurt Mahler

It is proved that, for any $\it m$ given distinct real numbers $\it a_1$, ..., $\it a_m$, there exist transcendental entire functions $\it f(z)$

at most of order m for which all the values

$$f^{(n)}(a_k)$$
 $\begin{cases} n = 0, 1, 2, \dots \\ k = 1, 2, \dots, m \end{cases}$

1.

are rational integers.

Let a_1, \ldots, a_m , where $m \ge 2$ (the case m = 1 is trivial), be

finitely many given distinct real numbers, and let

$$a_{hj}$$
 $\begin{cases} h = 0, 1, 2, \dots \\ j = 1, 2, \dots, m \end{cases}$

be infinitely many real numbers still to be selected. Put

$$g(z) = (z-a_1) \dots (z-a_m), \quad A_k = |g'(a_k)| = \prod_{j=1}^m |a_k-a_j|,$$

so that all $A_{\vec{k}}$ are positive numbers. Let further

$$g_{hj}(z) = \frac{a_{hj}}{z - a_j} \cdot \frac{g(z)^{h+1}}{h! (h+1)!^{m-1}} \quad \begin{cases} h = 0, 1, 2, \dots \\ j = 1, 2, \dots, m \end{cases}$$

and

Kurt Mahler

Then, for all non-negative integers
$$n$$
 ,
$$g_{hj}^{(n)}\left(\alpha_k\right)=0 \quad \text{if} \quad j=k \quad \text{and} \quad h>n \text{ , or if } j\neq k \quad \text{and} \quad h\geq n \text{ ,}$$

but
$$g_{nk}^{(n)}(a_k) = a_{nk} \prod_{j=1}^{m} \left\{ \frac{(a_k - a_j)^{n+1}}{(n+1)!} \right\} = \mp \frac{a_{nk} \cdot A_k^{n+1}}{(n+1)!^{m-1}}.$$

It follows therefore that

Firstly, take

$$(1) \quad f^{(n)}(a_k) = \mp \frac{a_{nk}A_k^{n+1}}{(n+1)!^{m-1}} + \sum_{h=0}^{n-1} \sum_{j=1}^{m} g_{hj}^{(n)}(a_k) \quad \begin{bmatrix} n = 0, 1, 2, \dots \\ k = 1, 2, \dots, m \end{bmatrix}.$$

2.

Here, in the double sum on the right-hand side, there occur only coefficients
$$a_{hj}$$
 with $0 \le h \le n$ -1. This basic equation (1) enables us therefore to select the coefficients a_{hj} suitably by induction on h , as

follows.

$$a_{0k} = \mp A_k^{-1} \quad (k = 1, 2, ..., m)$$
,

so that

$$f(a_1) = \bar{+} 1 \quad (k = 1, 2, ..., m)$$
.

Secondly, let $n \ge 1$, and assume that all coefficients $a_{h,i}$ with $0 \le h \le n-1$ have already been fixed. There exist then, for each suffix k = 1, 2, ..., m , just two real values of α_{hj} such that simultaneously

$$-(n+1)!^{m-1} \le \alpha_{nk} A_k^{n+1} \le + (n+1)!^{m-1}, \quad \alpha_{nk} \ne 0,$$

and

 $f^{(n)}(a_k)$ is a rational integer. With the coefficients a_{hj} so chosen, we find for f(z) the upper

estimate

$$\left|f(z)\right| \leq \sum\limits_{h=0}^{\infty} \sum\limits_{j=1}^{m} \frac{\left|g(z)\right|}{^{A}_{j}\left|z-a_{j}\right|} \frac{\left|g(z)\right|^{h}}{^{A}_{j}^{h}.h!} \;,$$
 which is equivalent to

This estimate shows that the series for f(z) converges absolutely and uniformly in every bounded set of the complex plane and defines an entire

 $|f(z)| \le \sum_{i=1}^{m} \frac{|g(z)|}{A_i|z-a_i|} \cdot \exp\left(\frac{|g(z)|}{A_i}\right)$.

function of z at most of order m. In fact, since there are always two choices for each of the coefficients $a_{h,i}$, we obtain a non-countable set of such functions f(z).

Hence, amongst these functions, there are also non-countably many which are

THEOREM. Let a_1, \ldots, a_m be finitely many distinct real numbers where $m \ge 2$. There exist non-countably many entire transcendental functions f(z) at most of order m such that all the values

not polynomials and hence are transcendental entire functions.

$$f^{(n)}(\alpha_k) \quad \begin{pmatrix} n = 0, 1, 2, \dots \\ k = 1, 2, \dots \\ m \end{pmatrix}$$

are rational integers.

following result has thus been established.

3.

Two interesting questions arise now which I have not been able to solve. The first one concerns the extension of the theorem to the case of

infinite sequences. $\mbox{PROBLEM A. Let $S=\{a_k\}$ be an infinite sequence of distinct real }$

numbers without finite limit points. Which conditions has S to satisfy if there is to exist at least one entire function f(z) not a constant

following question.

such that all the values

418

In the special case when S consists of the integral multiples of a fixed positive number, I have proved that there do exist entire functions

with this property; see [1]. $\text{To formulate a second problem, let again } a_1, \, \dots, \, a_m \, , \, \, m \geq 2 \, , \, \text{be a}$ finite set of distinct real numbers, and let f(z) be one of the functions

the existence of which has been established in the theorem. Since we may

replace
$$z$$
 by $z-a_m$, there is no loss of generality in assuming that $a_m=0$. With this choice, the set $\{a_1,\ \dots,\ a_{m-1}\}$ has then non-countably many possibilities. On the other hand, it is easily seen that there are only countably many entire functions of the form

$$f(z) = \sum_{h=0}^{\infty} f_h \frac{z^h}{h!}$$

with rational integral coefficients f_h which satisfy algebraic differential equations. Taking m=2 , we arrive therefore at the

PROBLEM B. For which real values of the number $a_1 \neq 0$ does there exist an entire transcendental function f(z) which (i) satisfies an algebraic differential equation, and

$$f^{(n)}(0)$$
 and $f^{(n)}(a_1)$ $(n = 0, 1, 2, ...)$

are rational integers?

Such functions always exist when α_1 is a rational multiple of π ; but I do not know whether this is the only case.