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Let « be an irrational p-adic number, r an arbitrary positive integer. Our aim is to
prove that there exists a rational integer X satisfying
<X < p¥’

such that every possible sequence of r digits 0,1,...,p— 1 occurs infinitely often in
the canonical p-adic series for Xo. It is clear that it suffices to prove this result for
p-adic ¢nlegers.

In a short paper written after the present one (Bulletin Australian Mathematical
Society 8 (1973), 191-203) I had proved the analogous result for real irrational numbers.
The method used in these two papers can easily be extended to finite sets of real and
p-adic numbers.

1. Let p be a prime, and let
o= §] a; p*
E=0
be a fixed irrational p-adic integer. Here the coefficients a, are digits
0,1,2,...,p—1.
If I is any positive integer, put
Then A4, is a rational integer satisfying
le—A4y|, <p? and 0< 4, <p—1. (1)
Next let x and y be two rational integers not both zero. Since « is irrational,
ar—y =+ 0.
Assume that the integer ! is already so large that

ez —y|, > p~. (2)
It follows then from
A, X —y = (0w —y)—(a—A)

and |2(@—4)|, = ||, e~ 4], < p™!
that lax—y|, > |x(@—4,)],
and therefore |42 —y|, = |ax—y|, > 0. (3)
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2. Further denote by » and NV any two positive integers satisfying

1<n<N.
If |ox—y|, < p~™ and hence by (3) also [4,2—y|, < p~Y,
then there exists to « and y a third rational integer z such that
Ajx—y = —pVa.
The two linear forms in x and z,

pmx and  p~ V(4,2 + pN2)
have the determinant
p 0
pnd, |

Therefore, by Minkowski’s theorem on linear forms, there exist two rational integers
and z not both zero such that

|z| <p® and |4;x+pVz| < pNn.
These two inequalities imply, first, that
x =+ 0.
Secondly, on defining y in terms of x and z by
y =4, x+pNz,
it follows that x and y satisfy the pair of inequalities
ly] < p¥™ and |ox—y|, < p~V.

A second solution of the same pair of inequalities is given by —x, —y; hence, without
loss of generality, it may be assumed that

y=0.
Hence the following result has been proved.

TaEOREM 1. Let o be an irrational p-adic integer, and let n and N be two rational
integers satisfying
1<n<N.

Then two rational integers x and y exist such that
1<z <pr, O0<y<p¥™, |ax—yl, <p™V
Remark. Assume that n and NV have the further property that
e, > pvn.
By the lower and upper bounds for |z,
2], = P

and hence o], > p~=.
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Hence in this case the restriction on y in the theorem can be replaced by the stronger

one that
1<y < phn,

3. In Theorem 1, keep n fixed, but allow N to run over all the integers
n, n+1, n+2,
To each such value of NV, there exists a pair of rational integers xy, yy satisfying
U< ey <p® O<yy <p™7 Jawy—yyl, <p™. 4)

Moreover, as soon as N is sufficiently large, y is positive. In fact, it is clear that y,
tends to infinity as &V increases indefinitely.
For all N the integer x, assumes only the finitely many values

1, F2, .., Fpm
It follows that there exists an infinite sequence {N,} of values of NV satisfying
N <N,<N;< ...
such that Ty =Ty, =Ty, = ... =Ty say,
retains a constant value independent of N,, while
Yy, = 1 forall k.
Hence, for the N in {N,}, (4) takes the stronger form
U< | <p 1 <yy, <PV owg—yy,l, <pV (5)

for all k. The constant product ax, is again an irrational p-adic integer, say, with the
series

w
I h
ALy = hz() bh r,

where the b, are digits 0,1, 2,...,p—1. Write similarly the positive integers yy, as
p-adic series

Yn, = hgochkph (k=1,2,3,..),

where also the ¢, are digits.
Then, from the upper bound for y,,

=0 if h = N,—n,
while the upper estimate for |oxy—yy,|, implies that
e =05, for h=0,1,2,... N, —1.
From these two sets of equations we deduce immediately that for all & > 1
b,=0 for N,—n<h<N,—1,

and hence we arrive at the following result.
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THEOREM 2. Let a be an irrational p-adic integer, and let n be any positive integer.
Then there exists a rational integer x, satisfying

1< || <7,
with the property that in the p-adic series

oy = § by, p*

h=0
there are infinitely many sequences of n consecutive digits by, all equal to zero.
4. Denote by m a positive integer and by

90,91 -+ Im—1

an arbitrary ordered sequence of m digits 0,1,2,...,p—1, and put
g=9o+t P+ +guap™

so that evidently 0<g<pr—1.

In Theorem 2, choose n > m and take for k any positive integer. This means that in
the p-adic series

axy = X b, p"
h=0
all digits b, with suffices in the interval
N,—n<h<N,—1

are zero. On the other hand, by the irrationality of ax,, infinitely many of the co-
efficients b, with b > N, are distinct from zero. Assume, to fix the ideas, that N} is
the smallest suffix such that both

N;l: = Nk and kat =f= 0.

We can write ax, as oaxy = X9+ ZLpNE* + X2 pNettm,
where
Ng—n—1 Ni*+m—1 . @ .
D= X bph Tp= X bpptN, Ep= X by phthem
k=0 h=Ng* h=Ng*+m

Here XY is a non-negative rational integer; X} is by by, + 0 a positive integer which is
relatively prime to p; and X2 is a p-adic integer.
Since X1 is prime to p, there exists a rational integer x; such that

1<2, <pm—1 and x,2} = g(modp™).
Put now X, = xyxy;
this integer depends on £ and satisfies
1< |X| < pmin

Evidently aX, =, 20+, L pNE a2 PN,
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Here the first term has the form
Ng—1
2 = X dyph
=0

where the d,, are certain digits; this follows from the upper bound for z,. Thus x, X}
contains only terms d,, p* with suffices
h < N,—1 < N},

and hence it cannot affect the digits of the next product z, X% p™¢". For similar reasons,
the first m digits of x; X% p™" do not depend on contributions from the third sum
x, 3 pNe*+m_ Therefore, by the congruence

2,2 =g (modp™),

these first m digits are exactly g, g, ---, gn—y i this order.
The result so proved holds for every choice of the integer

k=1,2,3,...

and it is clear from the irrationality of x,« that the integer Nj tends to infinity at the
same time as k. On the other hand, the integer X, satisfies for every k£ the same
inequality
1< |X,] < pmn.
It follows then that there is an infinite sequence
by, kg, kg, ...

of distinet suffices £ tending to infinity for which X, retains a fixed value, X say. Hence
the construction just given leads to the following result.

TurorEM 3. Let « be an irrational p-adic integer, and let m and n be two rational
integers satisfying
1<m<n.
Let further G ={90:91 > Im-1}

be an arbitrary ordered sequence of m digits. Then there exists a positive integer X depending
only on a, m, and n, but not on G, such that the sequence of digits f, in

aX = ¥ fip"
h=0

contains infinitely often the sequence G'. Moreover, 1 < |X| < pm+n,

5. The result just proved will now be applied in a special case which, in fact, leads
to a generalization.
Denote by r any positive integer. There are exactly

pr
possible distinet ordered sequences of r digits 0,1,2,...,p—1. By writing these p"

sequences one after the other, say in lexicographic order, we obtain a new ordered

sequence ‘
E ={ee,,...,e5}, where R =rp,
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of digits in which every ordered sequence of  digits is contained as a part. (In fact,
it is possible to find sequences E of this kind which are much shorter.)
Next put
m=mn=R=rp

and apply Theorem 3. This gives a rational integer X satisfying
1< |X]| < prtn = p¥2”
such that the ordered sequence E occurs infinitely often among the sequence of
digits ¢, of
OCX = Z Cp, ph
B=0
In other words, every possible sequence of » digits occurs infinitely often among the
digits of Xo.

If Xo has this property, so has — Xa. For let ¢, be the first digit of X which does
not vanish. Then evidently

—aX =(p—c)p'+ X (p—c,—1)p5
h=s+1

also contains every possible sequence of r digits, naturally not in general in the same
order as in K. Thus we arrive at the following final result.

THEOREM 4. Let
o0
o= 3 a,p"
r=0
be any irrational p-adic integer and r any positive integer. Then there exists a positive

vnteger X less than p*" such that every possible sequence of r digits occurs infinitely often
among the digits of o X.



