PCPS~76-42
Printed in Great Britain
On the digits of the multiples of an irrational

p-adic number

By KURT MAHLER Canberra

In a short paper written after the present one (Bulletin Australian Mathematical Society 8 (1973), 191-203) I had proved the analogous result for real irrational numbers.

Proc. Camb. Phil. Soc. (1974), 76, 417

p-adic integers.

Let
$$\alpha$$
 be an irrational p -adic number, r an arbitrary positive integer. Our aim is to prove that there exists a rational integer X satisfying

 $1 \leq X < n^{2p^r}$ such that every possible sequence of r digits 0, 1, ..., p-1 occurs infinitely often in the canonical p-adic series for $X\alpha$. It is clear that it suffices to prove this result for

(Received 4 March 1974)

p-adic numbers. 1. Let p be a prime, and let

$$lpha = \sum\limits_{k=0}^{\infty} a_k \, p^k$$

The method used in these two papers can easily be extended to finite sets of real and

be a fixed irrational p-adic integer. Here the coefficients a_k are digits $0, 1, 2, \ldots, p-1.$

$$A_l = \sum_{k=1}^{l-1} a_k \, p^k.$$

 $|ax-y|_n > |x(\alpha-A_l)|_n$

 $|A_1x-y|_n=|\alpha x-y|_n>0.$

 $|\alpha - A_l|_p \leqslant p^{-l}$ and $0 \leqslant A_l \leqslant p^l - 1$. Next let x and y be two rational integers not both zero. Since α is irrational,

If l is any positive integer, put

It follows then from

and

that

and therefore

Then A_l is a rational integer satisfying

 $\alpha x - y \neq 0$.

Assume that the integer l is already so large that

 $|\alpha x - y|_n > p^{-l}$.

(1)

(2)

(3)

417

 $A_1 X - y = (\alpha x - y) - x(\alpha - A_1)$

 $|x(\alpha - A_l)|_p = |x|_p |\alpha - A_l|_p \leqslant p^{-l}$

Kurt Mahler 2. Further denote by n and N any two positive integers satisfying

 $1 \le n \le N$.

If
$$|\alpha x - y|_p \le p^{-N}$$
 and hence by (3) also $|A_l x - y|_p \le p^{-N}$, then there exists to x and y a third rational integer z such that

If

 $A_1 x - y = -p^N z$. The two linear forms in x and z,

$$p^{-n}x \quad \text{and} \quad p^{-(N-n)}(A_lx+p^Nz)$$
 have the determinant
$$\begin{vmatrix} p^{-n} & 0 \\ p^{-(N-n)}A_l & p^n \end{vmatrix} = 1.$$
 Therefore, by Minkowski's theorem on linear forms, there exist two rational integers

Therefore, by Minkowski's theorem on linear forms, there exist two rational integers x and z not both zero such that $|x| \leq p^n$ and $|A_1x + p^Nz| < p^{N-n}$.

$$|x| \leqslant p^n \quad \text{and} \quad |A_l \, x + p^N z| < p^{N-n}.$$
 These two inequalities imply, first, that
$$x \neq 0.$$

Secondly, on defining y in terms of x and z by $y = A_1 x + p^N z$.

$$y=A_lx+p^{n}z,$$
 it follows that x and y satisfy the pair of inequalities $|y|< p^{N-n} \quad {\rm and} \quad |\alpha x-y|_p\leqslant p^{-N}.$

A second solution of the same pair of inequalities is given by -x, -y; hence, without loss of generality, it may be assumed that

$$y\geqslant 0.$$
 Hence the following result has been proved.
 Theorem 1. Let α be an irrational p-adic integer, and let n and N be two rational

integers satisfying $1 \le n \le N$.

$$1\leqslant n\leqslant N.$$
 Then two rational integers x and y exist such that

 $1 \leqslant |x| \leqslant p^n$, $0 \leqslant y < p^{N-n}$, $|\alpha x - y|_n \leqslant p^{-N}$.

$$1\leqslant \left|x\right|\leqslant p^{n},\quad 0\leqslant y< p^{N-n},\quad \left|\alpha x-y\right|_{p}\leqslant p^{-N}.$$

Remark. Assume that n and N have the further property that

 $|\alpha|_n > p^{-(N-n)}$.

By the lower and upper bounds for |x|,

 $|x|_p \geqslant p^{-n}$

 $|\alpha x|_n > p^{-N}$. and hence

419

(4)

(5)

 $1 \leqslant y < p^{N-n}$. 3. In Theorem 1, keep n fixed, but allow N to run over all the integers

 $n, n+1, n+2, \ldots$

To each such value of N, there exists a pair of rational integers x_N , y_N satisfying $1 \le |x_N| \le p^n$, $0 \le y_N < p^{N-n}$, $|\alpha x_N - y_N|_p \le p^{-N}$.

Moreover, as soon as
$$N$$
 is sufficiently large, y_N is positive. In fact, it is clear that y_N tends to infinity as N increases indefinitely.

For all N the integer x_N assumes only the finitely many values

$$\mp 1, \quad \mp 2, \quad \dots, \quad \mp p^n.$$

follows that there exists an infinite sequence
$$\{N_i\}$$
 of

It follows that there exists an infinite sequence $\{N_k\}$ of values of N satisfying

follows that there exists an infinite sequence
$$\{N_k\}$$
 of

 $N_1 < N_2 < N_2 < \dots$

such that
$$x_{N_1} = x_{N_2} = x_{N_3} = \dots = x_0$$
 say,

retains a constant value independent of N_k , while

stains a constant value independent of
$$N_k$$
, while $y_{N_k} \geqslant 1$ for all k .

 $y_{N_k} \geqslant 1$ for all k.

$$y_{N_k}\geqslant 1$$
 for all $k.$

Hence, for the N in $\{N_k\}$, (4) takes the stronger form

ence, for the
$$N$$
 in $\{N_k\}$, (4) takes the stronger form

$$1\leqslant |x_0|\leqslant p^n,\quad 1\leqslant y_{N_k}< p^{N_k-n},\quad |lpha|$$

$$1 \leqslant |x_0| \leqslant p^n, \quad 1 \leqslant y_{N_k} < p^{N_k-n}, \quad |\alpha x_0|$$

$$1\leqslant |x_0|\leqslant p^n,\quad 1\leqslant y_{N_k}< p^{N_k-n},\quad |lpha x_0-y_{N_k}|_p\leqslant p^{-N_k}$$

$$1 \leqslant |x_0| \leqslant p^n, \quad 1 \leqslant y_{N_k} < p^{N_k - n}, \quad |\alpha x_0 - y_{N_k}|_p \leqslant p^{-N_k}$$
 (5) for all k . The constant product αx_0 is again an irrational p -adic integer, say, with the

$$1 \leqslant y_{N_k} < p^{N_k-n}, \quad | \alpha$$
t αx_0 is again an irratio

product
$$\alpha x_0$$
 is again an irration $\sum_{k=0}^{\infty} k = nk$

 $\alpha x_0 = \sum_{h=0}^{\infty} b_h \, p^h,$

$$\alpha x_0 = \sum_{h=0}^{\infty} b_h p^h,$$

where the
$$b_h$$
 are digits $0, 1, 2, ..., p-1$. Write similarly the positive integers y_{N_k} as p -adic series

 $y_{N_k} = \sum_{h=0}^{\infty} c_{hk} p^h \quad (k = 1, 2, 3, ...),$

$$y_{N_k} = \sum_{h=0}^{\infty} c_{hk} \, p^h \quad (k=1,2,$$

$$g_{N_k} - \sum\limits_{h=0}^{L} c_{hk} \, p$$
 ($k=1,2$) digits

where also the c_{hk} are digits.

and hence we arrive at the following result.

$$\text{ per bound for } y_{N_k},$$

Then, from the upper bound for y_{N_k} ,

$$c_{hk} = 0 \quad \text{if} \quad h \geqslant N_k - n,$$

series

p-adic series

$$c_{hk} = 0 \quad \text{if} \quad h \geqslant N_k - n,$$

nate for
$$|\alpha x_0 - y_{x_0}|$$
 implies that

From these two sets of equations we deduce immediately that for all $k \ge 1$

 $c_{hk} = b_h$ for $h = 0, 1, 2, ..., N_k - 1$.

 $b_h = 0$ for $N_k - n \leq h \leq N_k - 1$,

while the upper estimate for
$$|\alpha x_0 - y_{N_k}|_p$$
 implies that

Kurt Mahler 420 Theorem 2. Let α be an irrational p-adic integer, and let n be any positive integer.

Then there exists a rational integer x_0 satisfying

4. Denote by m a positive integer and by

with the property that in the p-adic series

so that evidently

 $1 \leqslant |x_0| \leqslant p^n$

 $\alpha x_0 = \sum_{h=0}^{\infty} b_h \, p^h$

 $0 \leqslant q \leqslant p^m - 1.$

 $g_0, g_1, \ldots, g_{m-1}$

an arbitrary ordered sequence of m digits 0, 1, 2, ..., p-1, and put

there are infinitely many sequences of n consecutive digits b_h all equal to zero.

 $g = g_0 + g_1 p + \dots + g_{m-1} p^{m-1},$

In Theorem 2, choose $n \ge m$ and take for k any positive integer. This means that in

the p-adic series $\alpha x_0 = \sum_{h=0}^{\infty} b_h \, p^h$

all digits
$$b_h$$
 with suffices in the interval
$$N_b - n \leqslant h \leqslant N_b - 1$$

are zero. On the other hand, by the irrationality of
$$\alpha x_0$$
, infinitely many of the coefficients b_h with $h \ge N_k$ are distinct from zero. Assume, to fix the ideas, that N_k^* is

the smallest suffix such that both
$$N_k^*\geqslant N_k\quad \text{and}\quad b_{N_k{}^*}\neq 0.$$

 $\alpha x_0 = \sum_{k=1}^{0} + \sum_{k=1}^{1} p^{N_k^*} + \sum_{k=1}^{2} p^{N_k^* + m}$ We can write αx_0 as

where

where
$$N_k-n-1$$
 N_k^*+m-1 N_k^*+m-1

 $\Sigma_k^0 = \sum_{k=0}^{N_k-n-1} b_k \, p^k, \quad \Sigma_k^1 = \sum_{k=N_k, *}^{N_k*+m-1} b_k \, p^{k-N_k*}, \quad \Sigma_k^2 = \sum_{k=N_k, *+m}^{\infty} b_k \, p^{k-N_k*-m}.$

Here
$$\Sigma_k^0$$
 is a non-negative rational integer; Σ_k^1 is by $b_{N_k^*} \neq 0$ a positive integer which is

relatively prime to p; and Σ_k^2 is a p-adic integer.

Since
$$\Sigma_k^1$$
 is prime to p , there exists a rational integer x_1 such that

 $X_{k} = x_{0} x_{1};$ Put now

this integer depends on
$$k$$
 and satisfies

 $1 \leqslant x_1 \leqslant p^m - 1$ and $x_1 \Sigma_k^1 \equiv g \pmod{p^m}$.

 $1 \leqslant |X_{k}| < p^{m+n}.$

Evidently
$$\alpha X_k = x_1 \Sigma_k^0 + x_1 \Sigma_k^1 p^{N_k^*} + x_1 \Sigma_k^2 p^{N_k^* + m}.$$

 $x_1 \Sigma_k^0 = \sum_{h=0}^{N_k-1} d_h \, p^h,$

 $h \leqslant N_{k} - 1 < N_{k}^{*}$ and hence it cannot affect the digits of the next product $x_1 \sum_{k=1}^{n} p^{N_k}$. For similar reasons, the first m digits of $x_1 \sum_{k=1}^{n} p^{N_k *}$ do not depend on contributions from the third sum

421

where the d_h are certain digits; this follows from the upper bound for x_1 . Thus $x_1 \sum_{k=1}^{n} x_1 + x_2 = 0$ contains only terms $d_h p^h$ with suffices

 $x_1 \sum_{k=1}^{2} p^{N_k * + m}$. Therefore, by the congruence

these first
$$m$$
 digits are exactly $g_0, g_1, ..., g_{m-1}$ in this order.
The result so proved holds for every choice of the integer

 $x_1 \Sigma_k^1 \equiv g \pmod{p^m},$

 $k = 1, 2, 3, \dots$

same time as k. On the other hand, the integer X_k satisfies for every k the same inequality $1 \leqslant |X_{k}| < p^{m+n}$.

It follows then that there is an infinite sequence
$$k_1, k_2, k_3, \dots$$

of distinct suffices k tending to infinity for which X_k retains a fixed value, X say. Hence the construction just given leads to the following result.

integers satisfying

to a generalization.

sequence

Let further

$$\leq n$$
.

$$1 \leqslant m \leqslant n$$
.

be an arbitrary ordered sequence of m digits. Then there exists a positive integer X depending

5. The result just proved will now be applied in a special case which, in fact, leads

possible distinct ordered sequences of r digits 0, 1, 2, ..., p-1. By writing these p^r sequences one after the other, say in lexicographic order, we obtain a new ordered

 $E = \{e_1, e_2, ..., e_R\}, \text{ where } R = rp^r,$

contains infinitely often the sequence G. Moreover, $1 \leq |X| < p^{m+n}$.

Denote by r any positive integer. There are exactly

$$\leq n$$
.

$$\leq n$$
.

$$1 \leqslant m \leqslant n.$$
 $G = \{g_0, g_1, \dots, g_{m-1}\}$

$$n$$
.

Theorem 3. Let
$$\alpha$$
 be an irrational p-adic integer, and let m and n be two rational tegers satisfying

$$\frac{1}{2}$$
 ery k the

and it is clear from the irrationality of $x_0 \alpha$ that the integer N_k^* tends to infinity at the

only on α , m, and n, but not on G, such that the sequence of digits f_h in $\alpha X = \sum_{h=0}^{\infty} f_h p^h$

Kurt Mahler

 $m=n=R=rp^{r}$

and apply Theorem 3. This gives a rational integer X satisfying

 $1\leqslant |X|< p^{m+n}=p^{2rp^r}$ such that the ordered sequence E occurs infinitely often among the sequence of

422

digits
$$c_h$$
 of
$$\alpha X = \sum_{h=0}^{\infty} c_h \, p^h.$$

In other words, every possible sequence of r digits occurs infinitely often among the

digits of $X\alpha$. If $X\alpha$ has this property, so has $-X\alpha$. For let c_s be the first digit of X which does not vanish. Then evidently

$$-lpha X = \left(p-c_s
ight)p^s + \sum\limits_{h=s+1}^{\infty} \left(p-c_h-1
ight)p^s,$$

also contains every possible sequence of r digits, naturally not in general in the same order as in E. Thus we arrive at the following final result.

THEOREM 4. Let

THEOREM 4. Let
$$lpha = \sum\limits_{h=0}^{\infty} a_h \, p^h$$

among the digits of αX .

be any irrational p-adic integer and r any positive integer. Then there exists a positive integer X less than p^{2p^r} such that every possible sequence of r digits occurs infinitely often